확산코드 내 워터마크 삽입에 관한 연구

(On the Insertion of a Watermark in Spreading Codes)

송민규, 송홍엽 (연세대학교) 이장용 (국방과학연구소)

2018 항법시스템학회 정기학술대회

2018. 11. 08

Watermarked DSSS

- Inserting some watermark into a spreading code
- Any two watermarks at different time are different.
- Each watermarked chip is either +1 or -1.

Why we consider?

- Watermarked DSSS have been considered to provide security at the signal level
 - Steganography
 - Watermark conveys some information which can be extracted after synchronized.
 - Authentication of GNSS open signals
 - Watermark is used to provide where a signal comes from
 - Protect from spoofing attacks
 - An option of GPS M signal for fast acquisition

How to insert watermark?

- Previous results are focused on how to use watermarks for security.
 - Usually assume the aggregated insertion

Case 1. aggregated

Case 2. spread

- The watermark insertion affects on auto- and cross-correlation of spreading code
- Question:

What insertion is better in the sense of acquisition performance?

Equivalent model

Assume that watermarked chip is a random variable over $\{+1, -1\}$ +1 with probability 0.5

Some properties

• At the acquisition process,

the receiver know which chips are watermarked.

- But has no information about what the watermark is.
- Therefore, It can only use the direct acquirable code (DAC), which is repeated, periodically.

Under ideal channel condition

where T is the set of indices where a chip is watermarked

watermark insert position design

- 1. Minimize auto-correlation magnitude of DAC
 - \Rightarrow For a given spreading code, it is hard to control in general
- 2. Minimize the variance $\sigma^2(\tau; T)$ of AWGN modeled $C_{DAC,W}(\tau)$ \Rightarrow Minimizing the maximum of $|T \setminus (T - \tau)|$ for any time shift

Sum of all the variances

$$C_{\text{DAC},W}(\tau) \approx \mathcal{N}(0, \sigma^{2}(\tau; T)) = \mathcal{N}(0, |T \setminus (T - \tau)|)$$

Lemma. For given two positive integers k, L with k < L, let T be a k-subset of \mathbb{Z}_L . Then,

$$\sum_{\tau=0}^{L-1} |T \setminus (T-\tau)| = kL - k^2.$$

If *k*, *L* are fixed, then the total amount of the AWGN modeled self-interference $C_{\text{DAC},W}(\tau)$ is fixed!

It is obvious that
$$|T \setminus (T - \tau)| = 0$$
 if $\tau = 0$.

Theorem. Assume that k watermarks are inserted in a watermarked spreading code of length L, according to the insert position T. Then,

$$\max_{0 \le \tau \le L-1} |T \setminus (T - \tau)| \ge \left| \frac{kL - k^2}{L - 1} \right|$$

Definition. For given two positive integers k, L with k < L, let T be a k-subset of \mathbb{Z}_L . Then, T is called a (L, k, λ) -cyclic difference set if $\{d - d' \pmod{L} \mid d, d' \in T, d \neq d'\}$

Corollary. For given two positive integers k, L with k < L, let T be a k-subset of \mathbb{Z}_L . If T is a (L, k, λ) -cyclic difference set, then $|T \setminus (T - \tau)| = k - \lambda$ for any $1 \le \tau \le L - 1$.

'0's (or '1's) in a binary sequence with two-level autocorrelation function

Examples:

- ✓ M-sequence of length $2^n 1$
- ✓ Legendre sequence of length pwith $p \equiv 3 \pmod{4}$
- ✓ Twin prime sequence of length p(p + 2)
 ✓ Etc.

(x, n) : a positive integer

p, p + 2: prime numbers

An example: aggregated vs spread

511 watermarked chips inserted into a Gold code of length 1023 spread aggregated

(based on '0's in an m-sequence)

Conclusion & Future work

- We give some analysis on the effect of watermark insertion on the auto-correlation of spreading code
 - We describe a lower bound and how to achieve the bound.
 - Spread insertion can achieve better performance than aggregated insertion.

We will extend this work to watermarked DS-CDMA
It requires multiple spreading codes with good auto- and cross-correlation.