DNN과 m-sequence를 활용한 시간 지연 추정 방법

CSDL

이민형, 김강산, 송홍엽

연세대학교 통신신호설계연구실

2019 한국통신학회 동계종합학술발표회

Synchronization

Transmitted sequence period L

Transmitted sequence period L

Received sequence

Reference sequence

τ	0	1	2	3	4	5	6	7
Cor.	0							

1	0	0	1	1	1	0	0	1	0	0	1	1	1	0	0
	-1	-1	1	-1	-1	-1	-1	-1	=	-6	•				
	1	1	1	0	0	1	0	0							

τ	0	1	2	3	4	5	6	7
Cor.	0	-6						

1	0	0	1	1	1	0	0	1	0	0	1	1	1	0	0
		-1	1	1	-1	1	-1	-1	1	=	0				
		1	1	1	0	0	1	0	0						

τ	0	1	2	3	4	5	6	7
Cor.	0	-6	0					

1	0	0	1	1	1	0	0	1	0	0	1	1	1	0	0
			1	1	1	1	1	1	1	1	=	- 8			
			1	1	1	0	0	1	0	0					

τ	0	1	2	3	4	5	6	7
Cor.	0	-6	0	8				

1	0	0	1	1	1	0	0	1	0	0	1	1	1	0	0	
								1	-1	-1	-1	-1	1	1	1	= 0
								1	1	1	0	0	1	0	0	

τ	0	1	2	3	4	5	6	7
Cor.	0	-6	0	8	0	-4	0	0

Estimated

$$\tau = 3$$

au	0	1	2	3	4	5	6	7
ı	<u> </u>	I)	4	J	U	/
Cor.	0	-6	0	8	0	-4	0	0
	<u> </u>	-					-	<u> </u>

Estimated

$$\tau = 3$$

τ	0	1	2	3	4	5	6	7
Cor.	0	-6	0	8	0	-4	0	0

But if the sequence is very long?

part of shifted sequence of length *k*

Don't repeated in one period

Which one?

m-sequence

		\boldsymbol{L}	pei	rio	dic	Se	equ	ıer	ıce	of perio	d I	_	
						١							
		• • •								•••			

m-sequence

$$f(x) = x^3 + x + 1$$

m-sequence

$$f(x) = x^3 + x + 1$$

m-sequence

$$f(x) = x^3 + x + 1$$

m-sequence

$$f(x) = x^3 + x + 1$$

m-sequence

$$f(x) = x^3 + x + 1$$

$$0$$

$$1 \cdot x^0$$

$$1 \cdot x^1$$

$$0 \cdot x^2$$

$$1 \cdot x^3$$

m-sequence

$$f(x) = x^3 + x + 1$$

m-sequence

$$f(x) = x^3 + x + 1$$
output

m-sequence

$$f(x) = x^3 + x + 1$$

Span property

For any m-sequence of period $2^n - 1$, as consisting of 0 and 1, all the binary n-tuples except the allzero appear exactly once in each period.

$$2^n-1$$

Span property

For any m-sequence of period $2^n - 1$, as consisting of 0 and 1, all the binary n-tuples except the allzero appear exactly once in each period.

001	
010	
011	
100	
101	
110	
111	1

001	
010	
011	
100	
101	
110	1
111	1

001	
010	
011	
100	
101	1
110	1
111	1

001	1
010	1
011	1
100	1
101	1
110	1
111	1

By Span property

Part of m-sequence length k, $(k \ge n)$ is not repeated in one period

DNN

Deep Neural Network

DNN

Fully Connected layer

Activate function: ReLU

Neurons in each layer : 10L

Tensorflow 1.12.0

Training set

 10^6 times

 10^3 times

 10^3 times

Simulation Result

Accuracy =

Number of Successful Estimation Number of Total Number to Estimate

Simulation Result

Conclusion

DNN + m-sequence

We can estimate time-delay τ with only part of sequence.

The length of received symbols can be changed by channel.

Conclusion

It can be possible to estimate the time-delay accurately, using other NN and other sequence.