Milewski sequences revisited, and its generalization

KICS North-America Branch Workshop 2019.2.9

Hong-Yeop Song

Yonsei University

Sequences and Correlation

• For complex-valued sequences x, y of length L, the periodic correlation of x and y at shift τ is

$$C_{x,y}(\tau) = \sum_{n=0}^{L-1} x(n+\tau)y^*(n)$$

- If y is a cyclic shift of x, it is called **autocorrelation**, and denoted by $C_x(\tau)$
- Otherwise, it is called crosscorrelation

Perfect Sequences

• A sequence **x** of length **L** is called **perfect** if

$$C_{x}(\tau) = \begin{cases} \mathbf{E}, & \tau \equiv 0 \pmod{L} \\ 0, & \tau \not\equiv 0 \pmod{L} \end{cases}$$

Here, \boldsymbol{E} is called the energy of \boldsymbol{x}

- (Sarwate, 79) Crosscorrelation of any two perfect sequences of length \boldsymbol{L} with the same energy \boldsymbol{E} is lower bounded by $\boldsymbol{E}/\sqrt{\boldsymbol{L}}$.
 - An optimal pair of perfect sequences of length L
 - An optimal set of perfect sequences of length L

Interleaved Sequence

- Consider two sequences $s_0 = \{a, b, c\}$ and $s_1 = \{d, e, f\}$ of length s_1 each
- Write each as a column of an array:

$$\begin{bmatrix} \mathbf{s}_0, \mathbf{s}_1 \end{bmatrix} = \begin{bmatrix} a & d \\ b & e \\ c & f \end{bmatrix}$$

• Read the array row-by-row and obtain a sequence of length **6**:

$$s = I(s_0, s_1) = \{a, d, b, e, c, f\}$$

is called an interleaved sequence of s_0 and s_1

History of Perfect Polyphase Sequences

5

The original Milewski construction

Length: $m \rightarrow m \cdot m^{2K}$

Output **perfect polyphase** sequence

$$\mathbf{s} = \{s(n)\}_{n=0}^{\mathbf{m}^{2K+1}-1}$$

where

$$s(n) = \beta(q)\omega^{qr}$$
$$\omega = e^{-j\frac{2\pi}{m^{1+K}}}$$

Here, we use

$$n = q m^K + r \leftrightarrow (q, r)$$

$m \cdot m^K \times m^K$ array form of s

$$\beta(0) \times \mathbf{1} \qquad \beta(0) \times \mathbf{1} \qquad \cdots \qquad \beta(0) \qquad \times \mathbf{1} \\ \beta(1) \times \mathbf{1} \qquad \beta(1) \qquad \times \boldsymbol{\omega} \qquad \cdots \qquad \beta(1) \qquad \times \left(\boldsymbol{\omega}^{N-1}\right)^{1} \\ \beta(2) \times \mathbf{1} \qquad \beta(2) \qquad \times \boldsymbol{\omega}^{2} \qquad \cdots \qquad \beta(2) \qquad \times \left(\boldsymbol{\omega}^{N-1}\right)^{2} \\ \vdots \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots \\ \beta(m-1) \times \mathbf{1} \qquad \beta(m-1) \times \boldsymbol{\omega}^{m-1} \qquad \cdots \qquad \beta(m-1) \times \left(\boldsymbol{\omega}^{N-1}\right)^{m-1} \\ \vdots \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots \\ \beta(0) \qquad \times \mathbf{1} \qquad \beta(0) \qquad \times \boldsymbol{\omega}^{m(N-1)} \qquad \cdots \qquad \beta(0) \qquad \times \left(\boldsymbol{\omega}^{N-1}\right)^{m(N-1)} \\ \beta(1) \qquad \times \mathbf{1} \qquad \beta(1) \qquad \times \boldsymbol{\omega}^{m(N-1)+1} \qquad \cdots \qquad \beta(1) \qquad \times \left(\boldsymbol{\omega}^{N-1}\right)^{m(N-1)+1} \\ \beta(2) \qquad \times \mathbf{1} \qquad \beta(2) \qquad \times \boldsymbol{\omega}^{m(N-1)+2} \qquad \cdots \qquad \beta(2) \qquad \times \left(\boldsymbol{\omega}^{N-1}\right)^{m(N-1)+2} \\ \vdots \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots \\ \beta(m-1) \times \mathbf{1} \qquad \beta(m-1) \times \boldsymbol{\omega}^{mN-1} \qquad \cdots \qquad \beta(m-1) \times \left(\boldsymbol{\omega}^{N-1}\right)^{mN-1} \qquad \cdots$$

Input sequence

of period *m*

$$N = m^K$$

Our framework

(A special type of interleaved sequences)

Interleaving technique

Output sequence
$$s = \{s(n)\}_{n=0}^{mN^2-1}$$
 where $s(n) = \mu(r) \beta_r(q) \omega^{q\pi(r)}$

with n = qN + r, and $\omega = \exp(-j2\pi/mN)$.

Definition. We define $\mathcal{A}(B,\pi)$ be a family of interleaved sequences constructed by the above procedure using all possible polyphase sequences μ .

Array Form

Assume that μ is the all-one sequence,

Column index r = 0, 1, 2, ..., N - 1

$\beta_0(0)$	$\times (\omega^{\pi(0)}$	β_1	$(0) \times (\omega^1)$	$(\tau(1))^{0}$	··	$\beta_{N-1}(0)$	$\times \left(\omega^{\pi(N-1)}\right)^{0}$
$\beta_0(1)$	$\times (\omega^{\pi(0)})$		$(1) \times (\omega^{1})$				$\times \left(\omega^{\pi(N-1)}\right)^{1}$
$\beta_{0}(2)$	$\times (\omega^{\pi(0)})$		(2) $\times (\omega^1)$	$(\tau(1))^2$	··		$\times \left(\omega^{\pi(N-1)}\right)^2$
	:		:		· .		:
$\beta_0(m-1)$	1)× $(\omega^{\pi(0)})$	$\beta_1^{(m-1)}$	$(m-1)\times(\omega^{n})$	$(\tau(1))^{m-1}$	/	$\beta_{N-1}(m-1)$	$\times \left(\omega^{\pi(N-1)}\right)^{m-1}$
	:		:				:
$\beta_0(0)$	$\times (\omega^{\pi(0)})$	$\beta_1^{m(N-1)}$	(0) $\times (\omega^1)$	$(\tau(1))^{m(N-1)}$. 7	$\beta_{N-1}(0)$	$\times \left(\omega^{\pi(N-1)}\right)^{m(N-1)}$
$\beta_0(1)$	$\times (\omega^{\pi(0)})$	$\binom{m(N-1)+1}{\beta_1}$	(1) $\times (\omega^1)$	$(\tau(1))^{m(N-1)+1}$		$\beta_{N-1}(1)$	$\times \left(\omega^{\pi(N-1)}\right)^{m(N-1)+1}$
$\beta_0(2)$	$\ltimes (\omega^{\pi(0)})$	$\beta_1^{m(N-1)+2}$ β_1	(2) $\times (\omega^1)$	$(\tau(1))^{m(N-1)+2}$	/	$\beta_{N-1}(2)$	$\times \left(\omega^{\pi(N-1)}\right)^{m(N-1)+2}$
	l:	i i	:		. ;	i	:
$\beta_0(m-1)$	1)× $(\omega^{\pi(0)})$	β_1	$(m-1)\times(\omega^{n})$	$(\tau(1))^{mN-1}$		$\beta_{N-1}(m-1)$	$\times \left(\omega_{\blacktriangle}^{\pi(N-1)}\right)^{mN-1}$
Input sequence $oldsymbol{eta}_0$ of period m			out sequence $oldsymbol{eta}_1$ of period m			t sequence $oldsymbol{eta}_{l}$ of period m	V-1
	I	otion = 7	77				

Input function $\pi: \mathbb{Z}_N \longrightarrow \mathbb{Z}_{mN}$

Milewski Construction is a Special Case (**)

Output perfect polyphase sequence

$$\mathbf{s} = \{s(n)\}_{n=0}^{m^{2K+1}-1}$$

where

$$s(n) = \beta(q)\omega^{q\mathbf{r}}$$

with
$$n = q m^K + r$$
,

and

$$\omega = e^{-j\frac{2\pi}{m^{1+K}}}.$$

Condition on perfectness

(Main result 1)

Definition. Let π , σ be two functions from \mathbb{Z}_N to \mathbb{Z}_{mN} . We define

$$\Psi_{\pi,\sigma}(\tau) = \{ x \in \mathbb{Z}_N | \pi(x+\tau) \equiv \sigma(x) \pmod{N} \}.$$

When $\pi = \sigma$, we use $\Psi_{\pi}(\tau)$ simply.

Theorem. Any sequence in $A(B, \pi)$ is perfect **if and only if** the following conditions are satisfied:

- 1) $|\Psi_{\pi}(r)| = 0$ for r = 1, 2, ..., N 1. That is, $\pi(r) \pmod{N}$ for r = 0, 1, ..., N - 1 is a permutation over \mathbb{Z}_N .
- 2) $\bf{\it B}$ is a collection of perfect sequences all of period $\bf{\it m}$ with the same energy.

We now call them the generalized Milewski sequences

Examples

- $\boldsymbol{\beta}_0 = \boldsymbol{\beta}_1 = \{0, -1, 1, 0, 1, 1\}$ which is a perfect sequence of length 6,
- N = 2,
- $\pi(r) = r$, and
- μ is the all-one sequence.

 $\boldsymbol{s} = \{0, 0, -1, -\omega, 1, \omega^2, 0, 0, 1, \omega^4, 1, \omega^5, 0, 0, -1, -\omega^7, 1, \omega^8, 0, 0, 1, \omega^{10}, 1, \omega^{11}\}$ is a perfect sequence of length 24.

Hong-Yeop Song

Examples

ASK constellation

- $\beta_0 = \beta_1 = \beta_2 =$ {3, -2, 3, -2, -2, -7, -2, -2} which is a perfect sequence of period 10
- N = 3,
- $\pi(r) = r$, and
- μ is the all-one sequence.

s is a perfect sequence of length 90.

$$\otimes \omega = e^{-j\frac{2\pi}{12}}$$

APSK constellation

Direct vs Indirect

Two-step synthesis

Theorem. Assume that *N* is a composite number.

- 1) Any generalized Milewski sequence of length mN^2 from the two-step method can be also obtained by the direct method.
- There exists a generalized Milewski sequence of length mN^2 from the direct method which can not be obtained by the two-step method.

Condition on optimal pair

(Main result 2)

Theorem. Let
$$B_1 = \{\beta_0, \beta_1, ..., \beta_{N-1}\}$$
 and $B_2 = \{\gamma_0, \gamma_1, ..., \gamma_{N-1}\}$, all of length m and the same energy E_B , and perfect.

Construct $\mathbf{s} \in \mathcal{A}(B_1, \pi)$ and $\mathbf{f} \in \mathcal{A}(B_2, \sigma)$.

Then, s and f have optimal crosscorrelation if and only if the following conditions are satisfied for each r = 0, 1, ..., N - 1:

- 1) $|\Psi_{\pi,\sigma}(r)| = 1$, i.e., $\Psi_{\pi,\sigma}(r) = \{x\}$.
- 2) For the unique $x \in \Psi_{\pi,\sigma}(r)$, the pair of sequences

$$\left\{\beta_{x+r}(t)\omega_m^{\pi(x+r)t}\right\}_{t=0}^{m-1} \quad \text{and} \quad \left\{\gamma_x(t)\omega_m^{\sigma(x)t}\right\}_{t=0}^{m-1} \quad \text{is optimal.}$$

Condition on optimal pair

(Simple Special Case)

Corollary. Let
$$B_1 = \{\beta_0, \beta_1, ..., \beta_{N-1}\}$$
 and $B_2 = \{\gamma_0, \gamma_1, ..., \gamma_{N-1}\}$, all of length m and the same energy E_B , and perfect.

Assume that π and σ have the same range.

Construct
$$s \in \mathcal{A}(B_1, \pi)$$
 and $f \in \mathcal{A}(B_2, \sigma)$.

Then, s and f have optimal crosscorrelation if and only if the following conditions are satisfied for each r = 0, 1, ..., N - 1:

- 1) $|\Psi_{\pi,\sigma}(r)| = 1$, i.e., $\Psi_{\pi,\sigma}(r) = \{x\}$.
- 2) For the unique $x \in \Psi_{\pi,\sigma}(r)$, the pair of sequences β_{r+r} and γ_r is optimal.

when m=1

- The all-one sequence of length 1 is a trivial perfect sequence.
- And, we can say that

"the all-one sequence and itself is a (trivial) optimal pair of perfect sequences of length 1"

• Therefore, for m = 1,

an optimal k-set of **generalized Milewski** sequences of length N^2 exists

if and only if

a $k \times N$ circular Florentine array exists

Example

• For a 4×15 circular Florentine array

									Song 00						
π_1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
π_2	0	7	1	8	2	12	3	11	9	4	13	5	14	6	10
π_3	0	4	11	7	10	1	13	9	5	8	3	6	2	14	12
π_4	0	13	7	2	11	6	14	10	3	5	12	9	1	4	8

we have optimal 4-set of generalized Milewski sequences of length $N^2 = 15^2$ by picking up a single perfect sequence from each and every

$$A(\{1\}, \pi_1)$$
, $A(\{1\}, \pi_2)$, $A(\{1\}, \pi_3)$, and $A(\{1\}, \pi_4)$.

Check

$$\pi_2(x+\tau)=\pi_1(x)$$

has exactly one solution x for any τ

etc...

when m>1

Assume we have an optimal pair β , γ and a 2 \times 5 circular Florentine array:

π_1	0	1	2	3	4
π_2	0	2	4	1	3

- 1) $|\Psi_{\pi,\sigma}(r)| = 1$, i.e., $\Psi_{\pi,\sigma}(r) = \{x\}$.
- 2) For the unique $x \in \Psi_{\pi,\sigma}(r)$, the pair of sequences β_{x+r} and γ_x is optimal.
- Construct $s \in A(B_1, \pi_1)$, $f \in A(B_2, \pi_2)$ with $B_1 = \{\beta_0, \beta_1, ..., \beta_{N-1}\}$ and $B_2 = \{\gamma_0, \gamma_1, ..., \gamma_{N-1}\}$, where

$$eta_0 = \gamma$$
 $\gamma_0 = \beta$ $\beta_1 = \beta$ $\gamma_1 = \gamma$ $\beta_4 = \beta$ $\gamma_4 = \gamma$

Then, any
$$s \in \mathcal{A}(B_1, \pi_1)$$

and $f \in \mathcal{A}(B_2, \pi_2)$ is an

optimal pair

Definition. Let π , σ be two functions from \mathbb{Z}_N to \mathbb{Z}_{mN} .

$$\Psi_{\pi,\sigma}(\tau) = \{ x \in \mathbb{Z}_N | \pi(x+\tau) \equiv \sigma(x) \pmod{N} \}.$$

π_1	0	1	2	3	4
π_2	0	2	4	1	3

$$\Psi_{1,2}(\mathbf{r}) = \{ x \in \mathbb{Z}_N | \pi_1(x + \mathbf{r}) \equiv \pi_2(x) \pmod{5} \} \leftrightarrow \boldsymbol{\beta}_{x+\mathbf{r}} \text{ and } \boldsymbol{\gamma}_x$$

$$\Psi_{1,2}(\mathbf{0}) = \{ x \in \mathbb{Z}_N | \pi_1(x+\mathbf{0}) \equiv \pi_2(x) \pmod{5} \} = \{0\} \leftrightarrow \beta_{0+0} = \beta_0 \text{ and } \gamma_0 \}$$
 $\Psi_{1,2}(\mathbf{1}) = \{ x \in \mathbb{Z}_N | \pi_1(x+\mathbf{1}) \equiv \pi_2(x) \pmod{5} \} = \{2\} \leftrightarrow \beta_{2+1} = \beta_3 \text{ and } \gamma_2 \}$
 $\Psi_{1,2}(\mathbf{2}) = \{ x \in \mathbb{Z}_N | \pi_1(x+\mathbf{2}) \equiv \pi_2(x) \pmod{5} \} = \{4\} \leftrightarrow \beta_{4+2} = \beta_1 \text{ and } \gamma_4 \}$
 $\Psi_{1,2}(\mathbf{3}) = \{ x \in \mathbb{Z}_N | \pi_1(x+\mathbf{3}) \equiv \pi_2(x) \pmod{5} \} = \{1\} \leftrightarrow \beta_{1+3} = \beta_4 \text{ and } \gamma_1 \}$
 $\Psi_{1,2}(\mathbf{4}) = \{ x \in \mathbb{Z}_N | \pi_1(x+\mathbf{4}) \equiv \pi_2(x) \pmod{5} \} = \{3\} \leftrightarrow \beta_{3+4} = \beta_2 \text{ and } \gamma_3 \}$

$$(\beta_0 \ \gamma_0) = (\beta, \gamma) \text{ or } (\gamma, \beta)$$

$$(\beta_1 \ \gamma_4) = (\beta, \gamma) \text{ or } (\gamma, \beta)$$

$$(\beta_2 \ \gamma_3) = (\beta, \gamma) \text{ or } (\gamma, \beta)$$

$$(\beta_3 \ \gamma_2) = (\beta, \gamma) \text{ or } (\gamma, \beta)$$

$$(\beta_4 \ \gamma_1) = (\beta, \gamma) \text{ or } (\gamma, \beta)$$

Maximum set size

Theorem. Let $F_c(N)$ be the maximal size of circular Florentine arrays with N columns(symbols). Denote by $O_G(mN^2)$ the maximum size of optimal sets generalized Milewski sequences of length mN^2 from perfect sequences of length m.

1) Assume that m = 1. Then

$$O_G(mN^2) = F_C(N).$$

2) Assume that $m \ge 2$ and let $O_P(m)$ be the maximum size of optimal perfect sequence sets of period m. Then,

$$O_G = \min\{O_P(m), F_C(N)\}.$$

Maximum set size – polyphase

(Popovic, 1992)

The maximum size of optimal Zadoff-Chu sequence sets with period m is $p_{\min} - 1$, where p_{\min} is the smallest prime factor of m.

Corollary. Let $N = mN^2$ be odd and let $O_M(L)$ be the maximum size of optimal sets of generalized Milewski polyphase sequences of length L constructed by using Zadoff-Chu sequences of length m.

1) If m = 1, then

$$O_M(L) = F_c(N)$$

2) If $m \ge 2$, then

$$O_M(L) = \min\{p_{\min} - 1, F_c(N)\},\,$$

where $p_{\min} - 1$ is the smallest prime factor of m.

There is no optimal pair of generalized Milewski polyphase sequences of even length constructed by using Zadoff-chu sequences.

Concluding remarks

- To obtain an optimal k-set of generalized Milewski sequences of length mN^2 , we need both:
 - A $k \times N$ circular Florentine array, and
 - An optimal k-set of perfect sequences of length m.

10 x 11 circular Florentine array

T. Etzion, S. W. Golomb and H. Taylor,

"Tuscan-K squares,"

Advances in Applied Mathematics, Vol. 10, pp. 164-174, 1989

H.-Y. Song and J. H. Dinitz,

"Tuscan Squares,"

CRC Handbook of Combinatorial Designs, edited by C. J. Colbourn and J. H. Dinitz, CRC Press, pp. 480-484, 1996.

H.-Y. Song,

"The existence of circular florentine arrays," Comput. Math. Appl., pp. 31-36, June 2000.

Concluding remarks

- To obtain an optimal k-set of generalized Milewski sequences of length mN^2 , we need both:
 - A $k \times N$ circular Florentine array, and
 - An optimal k-set of perfect sequences of length m.

Some open problems:

- For a given integer N, what is the exact value of $F_c(N)$?
- For a given integer and its smallest prime factor p_{\min} , is there any other optimal set of size greater then $p_{\min} 1$?

Thanks!