Simple construction of $[2^k - 1 + k, k, 2^{k-1} + 1]$ codes attaining the Griesmer bound

Jeong-Heon Kim and Hong-Yeop Song Yonsei University

Griesmer bound

• Description follows

Griesmer bound

• For any [n,k,d] code,

$$n \ge \sum_{i=0}^{k-1} \left\lceil d / 2^i \right\rceil$$

• An [n,k,d] code with the equality is said to be optimal

Brief history

- For $d \leq 2^{k-1}$
 - In 1965, Solomon and Stiffler
 - In 1974, Belov
 - In 1981, Helleseth
- For $d > 2^{k-1}$
 - In 1981, Helleseth and van Tilborg
 - In 1983, Helleseth

A new construction

Let's consider a code C with the following generator matrix :

$$G = \left[P_{2^{k}-1} \mid I_{k} \right]$$

Then, C is a code and attains the Griesmer bound.

Proof(1)

• The minimum distance of C is $2^{k-1} + 1$ - for any $c \in C, c \neq 0$ $c = (h \mid m)$

where h is some codeword of the dual code of the $[2^{k} - 1, 2^{k} - 1 - k]$ Hamming code and m is a message vector.

Proof(2)

• C attains the Griesmer bound