

Decoding RS codes with errors and erasures by continued fractions

Zhi Jing and Hong-Yeop Song Yonsei University

2022.02.11 2022년 한국통신학회 동계종합학술발표회

Contents

1. System model

- 2. Reed-Solomon (RS) code
 - 1) Encoding process
 - 2) Decoding with errors and erasures

3. The proposed modified algorithm

- 1) Continued fraction
- 2) The proposed continued fraction algorithm
- 3) Simulation result

System model

Transmitter

RS code

• [n, k] narrow-sense RS code over \mathbb{F}_{2^m}

RS code

• [n, k] narrow-sense RS code over \mathbb{F}_{2^m}

• α is the root of the primitive polynomial

Example: [7,3] RS code over \mathbb{F}_{2^3}

$$g(z) = (z + \alpha)(z + \alpha^{2})(z + \alpha^{3})(z + \alpha^{4})$$

= $\alpha^{3} + \alpha z + z^{2} + \alpha^{3}z^{3} + z^{4}$

• α is the root of $z^3 + z + 1 = 0$

Example: [7,3] RS code over \mathbb{F}_{2^3}

$$g(z) = (z + \alpha)(z + \alpha^{2})(z + \alpha^{3})(z + \alpha^{4})$$

= $\alpha^{3} + \alpha z + z^{2} + \alpha^{3}z^{3} + z^{4}$

• α is the root of $z^3 + z + 1 = 0$

the number of erasures: $\mu = 2$

T_1	T_2	T_3	T_4
α^4	α^4	α^2	α^6

 $\downarrow \downarrow$

$$\sigma(z)$$
: error-locator polynomial $\sigma(z) = 1 + \alpha^4 z$

Continued fractions

integer part fractional part

Field element
$$s = a_0 + r_0$$

$$= a_0 + \frac{I}{a_1 + r_1}$$

$$= a_0 + \frac{I}{a_1 + \frac{I}{a_2 + r_2}}$$

$$\vdots$$

$$= a_0 + (a_1 + (a_2 + \dots + (a_n + r_n)^{-1} \dots)^{-1})^{-1}$$

$$= \frac{A_n(a_n + r_n) + B_n}{C_n(a_n + r_n) + D_n}$$

$$s_n \colon n^{th} \text{ approximation of } s$$

$$s_n = \frac{A_n a_n + B_n}{C_n a_n + D_n} = \frac{P_n}{Q_n} \implies \begin{cases} P_{n+1} = a_{n+1} P_n + P_{n-1} \\ Q_{n+1} = a_{n+1} Q_n + Q_{n-1} \end{cases}$$

Algorithm 1 The process of determining $\sigma(z)$ based on the continued fractions with T(z) and μ erasures

- 1: **Input** $T_1, T_2, \ldots, T_r, \mu$.
- 2: Initialize k = 0, $P^{(-1)}(z) = 1$, $P^{(0)}(z) = 1$,

$$R^{(-1)}(z) = 1 + \sum_{j=1}^{r-\mu} T_{\mu+j} \cdot z^{-j} + X \cdot z^{-(r-\mu+1)},$$

$$R^{(0)}(z) = \sum_{i=1}^{r-\mu} T_{\mu+j} \cdot z^{-j} + X \cdot z^{-(r-\mu+1)}.$$

3: Increase k by 1.

$$b^{(k)} = \frac{\text{coefficient of the highest degree term of } R^{(k-1)}(z)}{\text{coefficient of the highest degree term of } R^{(k-2)}(z)}.$$

4: Obtain the quotient $a^{(k)}(z)$ and the remainder $R^{(k)}(z)$ such that

$$b^{(k)} \cdot R^{(k-2)} = a^{(k)}(z) \cdot R^{(k-1)} + R^{(k)}(z),$$

where $a^{(k)}(z)$ must not contain negative powers of the indeterminate z.

- 5: Obtain $P^{(k)}(z) = a^{(k)}(z) \cdot P^{(k-1)} + b^{(k)} \cdot P^{(k-2)}$
- 6: If the coefficient of the highest degree term of $R^{(k)}(z)$ is not X, go to Step 3.
- 7: Output the error-locator polynomial $\sigma(z)$ as the reciprocal polynomial of $P^{(k)}(z)$ and stop.

Algorithm 1 The process of determining $\sigma(z)$ based on the continued fractions with T(z) and μ erasures

- 1: **Input** $T_1, T_2, \ldots, T_r, \mu$.
- 2: Initialize k = 0, $P^{(-1)}(z) = 1$, $P^{(0)}(z) = 1$,

$$R^{(-1)}(z) = 1 + \sum_{j=1}^{r-\mu} T_{\mu+j} \cdot z^{-j} + X \cdot z^{-(r-\mu+1)},$$

$$R^{(0)}(z) = \sum_{i=1}^{r-\mu} T_{\mu+j} \cdot z^{-j} + X \cdot z^{-(r-\mu+1)}.$$

3: Increase k by 1.

$$b^{(k)} = \frac{\text{coefficient of the highest degree term of } R^{(k-1)}(z)}{\text{coefficient of the highest degree term of } R^{(k-2)}(z)}.$$

4: Obtain the quotient $a^{(k)}(z)$ and the remainder $R^{(k)}(z)$ such that

$$b^{(k)} \cdot R^{(k-2)} = a^{(k)}(z) \cdot R^{(k-1)} + R^{(k)}(z),$$

where $a^{(k)}(z)$ must not contain negative powers of the indeterminate z.

- 5: Obtain $P^{(k)}(z) = a^{(k)}(z) \cdot P^{(k-1)} + b^{(k)} \cdot P^{(k-2)}$
- 6: If the coefficient of the highest degree term of R^(k)(z) is not X, go to Step 3.
- 7: Output the error-locator polynomial $\sigma(z)$ as the reciprocal polynomial of $P^{(k)}(z)$ and stop.

T_1	T_2	T_3	T_4
α^4	α^4	α^2	α^6

the number of erasures: $\mu = 2$

Algorithm 1 The process of determining $\sigma(z)$ based on the continued fractions with T(z) and μ erasures

- 1: **Input** $T_1, T_2, \ldots, T_r, \mu$.
- 2: Initialize k = 0, $P^{(-1)}(z) = 1$, $P^{(0)}(z) = 1$,

$$R^{(-1)}(z) = 1 + \sum_{j=1}^{r-\mu} T_{\underline{\mu+j}} \cdot z^{(-1)} + X \cdot z^{-(r-\mu+1)},$$

$$R^{(0)}(z) = \sum_{i=1}^{r-\mu} T_{\underline{\mu+j}} \cdot z^{\underbrace{-j}} + X \cdot z^{-(r-\mu+1)}.$$

3: Increase k by 1.

$$b^{(k)} = \frac{\text{coefficient of the highest degree term of } R^{(k-1)}(z)}{\text{coefficient of the highest degree term of } R^{(k-2)}(z)}.$$

4: Obtain the quotient $a^{(k)}(z)$ and the remainder $R^{(k)}(z)$ such that

$$b^{(k)} \cdot R^{(k-2)} = a^{(k)}(z) \cdot R^{(k-1)} + R^{(k)}(z),$$

where $a^{(k)}(z)$ must not contain negative powers of the indeterminate z.

- 5: Obtain $P^{(k)}(z) = a^{(k)}(z) \cdot P^{(k-1)} + b^{(k)} \cdot P^{(k-2)}$
- 6: If the coefficient of the highest degree term of R^(k)(z) is not X, go to Step 3.
- 7: Output the error-locator polynomial $\sigma(z)$ as the reciprocal polynomial of $P^{(k)}(z)$ and stop.

T_1	T_2	T_3	T_4
α^4	α^4	α^2	α^6

the number of erasures: $\mu=2$

$$R^{(-1)}(z) = 1 + \alpha^2 z^{-1} + \alpha^6 z^{-2} + X z^{-3}$$

$$R^{(0)}(z) = \alpha^2 z^{-1} + \alpha^6 z^{-2} + X z^{-3}$$

$$X + any \ value = X$$

 $X \cdot any \ value = X$

Algorithm 1 The process of determining $\sigma(z)$ based on the continued fractions with T(z) and μ erasures

- 1: **Input** $T_1, T_2, \ldots, T_r, \mu$.
- 2: Initialize k = 0, $P^{(-1)}(z) = 1$, $P^{(0)}(z) = 1$,

$$R^{(-1)}(z) = 1 + \sum_{j=1}^{r-\mu} T_{\mu+j} \cdot z^{-j} + X \cdot z^{-(r-\mu+1)},$$

$$R^{(0)}(z) = \sum_{i=1}^{r-\mu} T_{\mu+j} \cdot z^{-j} + X \cdot z^{-(r-\mu+1)}.$$

3: Increase k by 1.

$$b^{(k)} = \frac{\text{coefficient of the highest degree term of } R^{(k-1)}(z)}{\text{coefficient of the highest degree term of } R^{(k-2)}(z)}.$$

Obtain the quotient a^(k)(z) and the remainder R^(k)(z) such that

$$b^{(k)} \cdot R^{(k-2)} = a^{(k)}(z) \cdot R^{(k-1)} + R^{(k)}(z),$$

where $a^{(k)}(z)$ must not contain negative powers of the indeterminate z.

- 5: Obtain $P^{(k)}(z) = a^{(k)}(z) \cdot P^{(k-1)} + b^{(k)} \cdot P^{(k-2)}$
- 6: If the coefficient of the highest degree term of R^(k)(z) is not X, go to Step 3.
- 7: Output the error-locator polynomial $\sigma(z)$ as the reciprocal polynomial of $P^{(k)}(z)$ and stop.

T_1	T_2	T_3	T_4
α^4	α^4	α^2	α^6

the number of erasures: $\mu=2$

$$R^{(-1)}(z) = 1 + \alpha^2 z^{-1} + \alpha^6 z^{-2} + X z^{-3}$$

$$R^{(0)}(z) = \alpha^2 z^{-1} + \alpha^6 z^{-2} + X z^{-3}$$

$$b^{(1)} = \frac{\alpha^2}{1} = \alpha^2$$

Algorithm 1 The process of determining $\sigma(z)$ based on the continued fractions with T(z) and μ erasures

- 1: **Input** $T_1, T_2, \ldots, T_r, \mu$.
- 2: Initialize k = 0, $P^{(-1)}(z) = 1$, $P^{(0)}(z) = 1$,

$$R^{(-1)}(z) = 1 + \sum_{j=1}^{r-\mu} T_{\mu+j} \cdot z^{-j} + X \cdot z^{-(r-\mu+1)},$$

$$R^{(0)}(z) = \sum_{i=1}^{r-\mu} T_{\mu+j} \cdot z^{-j} + X \cdot z^{-(r-\mu+1)}.$$

3: Increase k by 1.

$$b^{(k)} = \frac{\text{coefficient of the highest degree term of } R^{(k-1)}(z)}{\text{coefficient of the highest degree term of } R^{(k-2)}(z)}.$$

4: Obtain the quotient $a^{(k)}(z)$ and the remainder $R^{(k)}(z)$ such that

$$b^{(k)} \cdot R^{(k-2)} = a^{(k)}(z) \cdot R^{(k-1)} + R^{(k)}(z),$$

where $a^{(k)}(z)$ must not contain negative powers of the indeterminate z.

- 5: Obtain $P^{(k)}(z) = a^{(k)}(z) \cdot P^{(k-1)} + b^{(k)} \cdot P^{(k-2)}$
- 6: If the coefficient of the highest degree term of R^(k)(z) is not X, go to Step 3.
- 7: Output the error-locator polynomial $\sigma(z)$ as the reciprocal polynomial of $P^{(k)}(z)$ and stop.

T_1	T_2	T_3	T_4
α^4	α^4	α^2	α^6

the number of erasures: $\mu=2$

$$R^{(-1)}(z) = 1 + \alpha^2 z^{-1} + \alpha^6 z^{-2} + X z^{-3}$$

$$R^{(0)}(z) = \alpha^2 z^{-1} + \alpha^6 z^{-2} + X z^{-3}$$

$$b^{(1)} = \frac{\alpha^2}{1} = \alpha^2$$

 $a^{(1)}(z)$: the quotient of $b^{(1)}R^{(-1)} \div R^{(0)}$ = $z + \alpha$

$$R^{(1)}(z)$$
: the remainder of $b^{(1)}R^{(-1)} \div R^{(0)}$
= Xz^{-2}

Algorithm 1 The process of determining $\sigma(z)$ based on the continued fractions with T(z) and μ erasures

- 1: **Input** $T_1, T_2, \ldots, T_r, \mu$.
- 2: Initialize k = 0, $P^{(-1)}(z) = 1$, $P^{(0)}(z) = 1$,

$$R^{(-1)}(z) = 1 + \sum_{j=1}^{r-\mu} T_{\mu+j} \cdot z^{-j} + X \cdot z^{-(r-\mu+1)},$$

$$R^{(0)}(z) = \sum_{i=1}^{r-\mu} T_{\mu+j} \cdot z^{-j} + X \cdot z^{-(r-\mu+1)}.$$

3: Increase k by 1.

$$b^{(k)} = \frac{\text{coefficient of the highest degree term of } R^{(k-1)}(z)}{\text{coefficient of the highest degree term of } R^{(k-2)}(z)}.$$

4: Obtain the quotient $a^{(k)}(z)$ and the remainder $R^{(k)}(z)$ such that

$$b^{(k)} \cdot R^{(k-2)} = a^{(k)}(z) \cdot R^{(k-1)} + R^{(k)}(z),$$

where $a^{(k)}(z)$ must not contain negative powers of the indeterminate z.

- 5: Obtain $P^{(k)}(z) = a^{(k)}(z) \cdot P^{(k-1)} + b^{(k)} \cdot P^{(k-2)}$
- 6: If the coefficient of the highest degree term of $R^{(k)}(z)$ is not X, go to Step 3.
- 7: Output the error-locator polynomial $\sigma(z)$ as the reciprocal polynomial of $P^{(k)}(z)$ and stop.

T_1	T_2	T_3	T_4
α^4	α^4	α^2	α^6

the number of erasures: $\mu = 2$

$$R^{(-1)}(z) = 1 + \alpha^2 z^{-1} + \alpha^6 z^{-2} + X z^{-3}$$

$$R^{(0)}(z) = \alpha^2 z^{-1} + \alpha^6 z^{-2} + X z^{-3}$$

$$b^{(1)} = \frac{\alpha^2}{1} = \alpha^2$$

 $a^{(1)}(z)$: the quotient of $b^{(1)}R^{(-1)} \div R^{(0)}$ = $z + \alpha$

 $R^{(1)}(z)$: the remainder of $b^{(1)}R^{(-1)} \div R^{(0)}$ = Xz^{-2}

$$P^{(1)}(z) = z + \alpha^4$$

Algorithm 1 The process of determining $\sigma(z)$ based on the continued fractions with T(z) and μ erasures

- 1: **Input** $T_1, T_2, \ldots, T_r, \mu$.
- 2: Initialize k = 0, $P^{(-1)}(z) = 1$, $P^{(0)}(z) = 1$,

$$R^{(-1)}(z) = 1 + \sum_{j=1}^{r-\mu} T_{\mu+j} \cdot z^{-j} + X \cdot z^{-(r-\mu+1)},$$

$$R^{(0)}(z) = \sum_{i=1}^{r-\mu} T_{\mu+j} \cdot z^{-j} + X \cdot z^{-(r-\mu+1)}.$$

3: Increase k by 1.

$$b^{(k)} = \frac{\text{coefficient of the highest degree term of } R^{(k-1)}(z)}{\text{coefficient of the highest degree term of } R^{(k-2)}(z)}.$$

4: Obtain the quotient $a^{(k)}(z)$ and the remainder $R^{(k)}(z)$ such that

$$b^{(k)} \cdot R^{(k-2)} = a^{(k)}(z) \cdot R^{(k-1)} + R^{(k)}(z)$$

where $a^{(k)}(z)$ must not contain negative powers of the indeterminate z.

- 5: Obtain $P^{(k)}(z) = a^{(k)}(z) \cdot P^{(k-1)} + b^{(k)} \cdot P^{(k-2)}$
- 6: If the coefficient of the highest degree term of $R^{(k)}(z)$ is not X, go to Step 3.
- 7: Output the error-locator polynomial $\sigma(z)$ as the reciprocal polynomial of $P^{(k)}(z)$ and stop.

T_1	T_2	T_3	T_4
α^4	α^4	α^2	α^6

the number of erasures: $\mu=2$

$$R^{(-1)}(z) = 1 + \alpha^2 z^{-1} + \alpha^6 z^{-2} + X z^{-3}$$

$$R^{(0)}(z) = \alpha^2 z^{-1} + \alpha^6 z^{-2} + X z^{-3}$$

$$b^{(1)} = \frac{\alpha^2}{1} = \alpha^2$$

$$a^{(1)}(z)$$
: the quotient of $b^{(1)}R^{(-1)} \div R^{(0)}$
= $z + \alpha$

$$R^{1}(z)$$
: the remainder of $b^{(1)}R^{(-1)} \div R^{(0)}$
= $\mathbf{X}z^{-2}$

$$P^{(1)}(z) = z + \alpha^4$$

Algorithm 1 The process of determining $\sigma(z)$ based on the continued fractions with T(z) and μ erasures

- 1: **Input** $T_1, T_2, \ldots, T_r, \mu$.
- 2: Initialize k = 0, $P^{(-1)}(z) = 1$, $P^{(0)}(z) = 1$,

$$R^{(-1)}(z) = 1 + \sum_{j=1}^{r-\mu} T_{\mu+j} \cdot z^{-j} + X \cdot z^{-(r-\mu+1)},$$

$$R^{(0)}(z) = \sum_{j=1}^{r-\mu} T_{\mu+j} \cdot z^{-j} + X \cdot z^{-(r-\mu+1)}.$$

3: Increase k by 1.

$$b^{(k)} = \frac{\text{coefficient of the highest degree term of } R^{(k-1)}(z)}{\text{coefficient of the highest degree term of } R^{(k-2)}(z)}.$$

4: Obtain the quotient $a^{(k)}(z)$ and the remainder $R^{(k)}(z)$ such that

$$b^{(k)} \cdot R^{(k-2)} = a^{(k)}(z) \cdot R^{(k-1)} + R^{(k)}(z)$$

where $a^{(k)}(z)$ must not contain negative powers of the indeterminate z.

- 5: Obtain $P^{(k)}(z) = a^{(k)}(z) \cdot P^{(k-1)} + b^{(k)} \cdot P^{(k-2)}$
- 6: If the coefficient of the highest degree term of R^(k)(z) is not X, go to Step 3.
- 7 Output the error-locator polynomial $\sigma(z)$ as the reciprocal polynomial of $P^{(k)}(z)$ and stop.

T_1	T_2	T_3	T_4
α^4	α^4	α^2	α^6

the number of erasures: $\mu = 2$

$$R^{(-1)}(z) = 1 + \alpha^2 z^{-1} + \alpha^6 z^{-2} + Xz^{-3}$$

$$R^{(0)}(z) = \alpha^2 z^{-1} + \alpha^6 z^{-2} + Xz^{-3}$$

$$b^{(1)} = \frac{\alpha^2}{1} = \alpha^2$$

 $a^{(1)}(z)$: the quotient of $b^{(1)}R^{(-1)} \div R^{(0)}$ = $z + \alpha$

 $R^{1}(z)$: the remainder of $b^{(1)}R^{(-1)} \div R^{(0)}$ = Xz^{-2}

$$P^{(1)}(z) = z + \alpha^4$$
$$\sigma(z) = 1 + \alpha^4 z$$

Simulation result

The results of decoding algorithms for [7,3] RS codes in some uncorrectable ranges

No. of	No. of	Total	Decoding failure in			Undetected
erasure	error	Total	CFA/BMA Chien algorithm		Foney algorithm	error
			(Step C)	(Step D)	(Step E)	
0	3	35	7	28	-	-
U	4	35	7	28	-	-
1	2	105	105	-	-	-
1	3	140	140	-	-	-
2	2	210	42	-	168	-
2	3	210	112	-	50	48
3	1	140	140	-	-	-
3	2	210	170	-	20	20
4	1	105	41	-	-	64
5	0	21	21	-	-	-

Thank you!