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Figure 1. Training error (left) and test error (right) on CIFAR-10 H(x)+x
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena Fig. 4. Diagram of the residual leaming block. 7(z) comesponds to the
on [mageNet 18 presented in Fig_ 4. stacked weight layers with Relu non-linearity.
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