제 1 회 부호 및 정보 이론 워크샵

PROBLEMS IN COSTAS ARRAYS

연세대학교 전자공학과 송 홍 엽

1996년 5월 11일 (토요일)

96/05/11

Page1

제 1회 부호 및 정보이론 워크샵

What is a Costas array of order n?

- A Costas array of order n is an n x n, otherwise blanked, array of n dots such that (1) each row (and column) contains exactly one dot and (2) all the n-choose-2 lines connecting two dots are distinct in either slope or length.
- v Examples of Costas arrays of order 1,2,3,4, and 5 are

Applications to Radar, Sonar, and FH Patterns

- Let K(x,y) be the number of dots matched between a Costas array of order n and its shifted version when the shift is to the right by x and up by y.
- Definition implies that, then,
 K(x,y) =0 or 1 for all |x|<n and |y|<n except for (x,y)=(0,0), and
 K(0,0)=n.

Ideal Autocorrelation Function

V Usually, x-axis represents time and y-axis represents frequency so that the Costas array of order n induces a set of n pulses each in different frequency (using exactly once) for the best possible resolution in "pulsed radar" or "active sonar" systems.

Costas array of order 6 and Autocorrelation (I)

Costas array of order 6 and Autocorrelation (II)

96/05/11

제 1회 부호 및 정보이론 워크샵

Costas array of order 6 and Autocorrelation (III)

96/05/11

제 1회 부호 및 정보이론 워크샵

Page6

Lempel Construction

- (Lempel) Let a be a primitive element in GF (q), the finite field of q elements. For x, y=1, 2, ..., q-2, the dots are in position (x, y) if and only if a^x+a^y =1.
- This produces an infinite family of Costas arrays of order q-2 for any prime power q. If there is a in GF (q) which is primitive and a+a=1 then the Costas array contains a dot in (1,1) position. Deleting it gives a Costas array of order q-3.
- It will be possible to produce a Costas array of order q-3 by deleting a corner dot whenever it contains a corner dot. Some sufficient conditions on the primitive element a for this to happen are :

```
a+a=1 (or, a=1/2);
a<sup>-1</sup>+a<sup>-1</sup>=1 (or, a=2);
a+a<sup>-1</sup>=1 (or, a is a root of x<sup>2</sup>-x+1=0)
```

Example of order 11 (and 10) : Lempel Construction

х	2 ^x	1-2 ^x	$\log_2(1-2^x)$
1	2	12	6
2	4	10	10
3	8	6	5
4	3	11	7
5	6	8	3
6	12	2	1
7	11	3	4
8	9	5	9
9	5	9	8
10	10	4	2
11	7	7	11

제 1회 부호 및 정보이론 워크샵

Golomb Construction

- (Golomb) Let a and b be primitive elements (not necessarily distinct) in GF (q), the finite field of q elements. For x, y=1,2,...,q-2, the dots are in position (x, y) if and only if a^x+b^y =1.
- V This produces an infinite family of Costas arrays of order q-2 for any prime power q. If there are a and b in GF (q) which are primitive and a+b=1 then the Costas array contains a dot in (1,1) position. Deleting it gives a Costas array of order q-3.
- v If, in addition, $a^2+b^2=1$, then an additional corner dot can be removed so that the result is of order q-4.

Golomb Construction (continued)

v If there exist primitive elements a and b (not necessarily distinct) in GF (q) satisfying the conditions below, then a Costas array of order n can be obtained by removing one or more corner dots:

name	CONDITIONS	n
L3	a ⁻¹ +a ⁻¹ =1 (or, a=2)	q - 3
T4	a ² +a=1	q-4
G3	a+b=1	q-3
G4	$a+b=1$ and $a^2+b^2=1$	q-4
G4*	$a+b=1$ and $a^2+b^{-1}=1$	q-4
G5*	and necessarily a ⁻¹ +b ² =1	q-5

Some Conditions

v L3: a⁻¹+a⁻¹=1 (or, a=2)

- This works only when 2 is primitive in GF(q).

- **v T4:** a²+a=1
 - A necessary condition for GF(q) to have a primitive a satisfying a²+a=1 is that q=4, q=5, q=9, a prime p with p=1 (mod 10), or p=9 (mod 10).
- **v G3:** a+b=1
 - It was proved that all the GF (q) has a and b with a+b=1.
- **v G4:** a+b=1 and $a^2+b^2=1$
 - This works only when $q=2^{k}$.
- **v G4**^{*:} a+b=1 and a²+b⁻¹=1
 - This works for precisely the subset of values of q for which T4 construction occurs: q=4, 5, 9, and those primes p for which T4 construction occurs which satisfy either $p=1 \pmod{20}$ or $p=9 \pmod{20}$

Welch Construction

- v Let a be a primitive root mod p, a prime.
- For x, y=1, 2, ..., p-1, the dots are in position (x, y) if and only if a^x =y.
 That is, the dots are in (x, a^x) for x=1, 2, ..., p-1.
- v Welch Costas array has an additional property:

After you roll up the square so that the left-most column comes right next to the right most column (the square plane now becomes the surface of a cylinder), cut vertically along any column, then the resulting square array is also a Costas array.

- This is called the "single periodicity."

Singly Periodic Costas Array of order 10

Number of distinct Costas arrays of order n

- v C(n) = number of distinct Costas arrays of order n
- c(n) = number of distinct Costas arrays of order n, inequivalent under the dihedral group of rotations and reflections of the square
- s(n) = number of distinct Costas arrays of order n which are symmetric across a diagonal AND inequivalent under the dihedral group of rotations and reflections of the square

EXAMPLE : C(4)=12, c(4)=2, and s(4)=1

<u>ທ</u> ່
<u>J</u>
Ĕ
Ø
\mathbf{O}
¥
()
),
\frown
\sim
J
J
b
Π
Q
S

32	231	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	n
<i>żż</i>	at least 1	at least T	at least 🖵	at least 🖵	at least 🖵	at least 🖵	at least r	at least r	87 2	20 52	35 36	64 64	10 24 0	15 09 6	18 27 6	21 10 4	19 61 2	17 25 2	12 82 8	78 52	43	21 60	76 0	44 4	20	11 6	40	12	4	2	1	C(n)
<i>żż</i>	at least T	at least r	at least 🖵	11 4	25 9	44 6	81 0	12 83	18 92	22 94	26 48	24 67	21 68	16 16	99 0	55 5	27 7	10 0	60	30	17	6	2	1	1	1	c(n)					
0	0	4	5	0	7	2	2	0	10	5	8	4	6	10	19	20	31	23	25	17	18	14	10	9	10	5	2	1	1	1	1	s(n)

Page17

Difference Triangle of a Costas array

Difference Triangle mod 10

Some Open Problems

- v Does there exist a Costas array of order 32?
 - The table of C(n) gives a "hunch" that it does not, because C(n) is monotonically increasing from 1 to 16 and then decreasing from 16 to 22 (current state of computer search).
 - On the other hand, For any positive integer n, there is a Costas array of size bigger than n from the algebraic constructions.
- v Does there exist a singly periodic Costas array which is essentially not from the Welch construction ?
 - No other examples are known except for those by the Welch construction.
 - It is known that every singly periodic Costas array of order up to 22 comes essentially from the Welch construction.