

GPS 신호의 오류제어부호에 대한 분석

조현우¹, 안재민², 주정민³, 송홍엽¹ 연세대학교¹, 충남대학교², 한국항공우주연구원³

2022.11.16

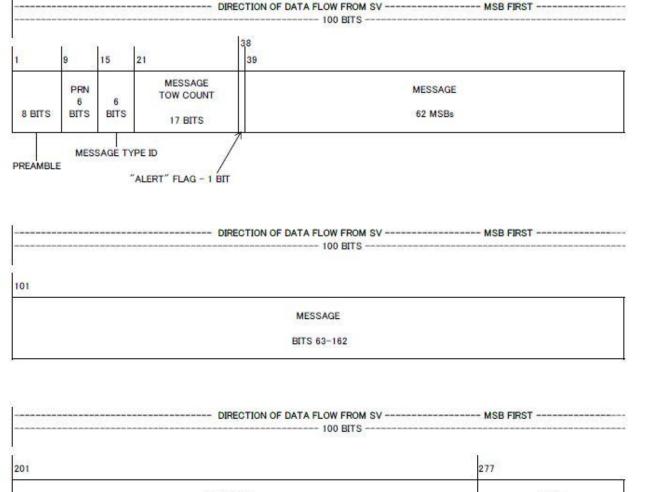
2022년도 추계종합학술발표회

목차

- 1. 서론
- 2. GPS CNAV 메시지 구조

- 3. GPS CNAV2 메시지 구조
- 4. GPS 오류제어부호 성능 분석
- 5. 결론

서론



- 최근 위성 항법 시스템에 기반한 다양한 서비스 성장이 활발
 - 특히 높은 데이터 전송율 및 고정밀 측위 신호에 대한 수요가 급증
 - 다양한 GNSS 신호로 인해 간섭 발생 → 오류를 줄이기 위한 연구 필요
- 이러한 수요에 맞게 다양한 위성 항법 시스템의 현대화 및 다양한 연구가 진행 중
 - 기존 GPS신호 L2C/L5 : 컨볼루셔날 부호
 - 현대화 GPS 신호 L1C : LDPC 부호
- 본 논문은 다음을 보이고자 함
 - (1) 위 GPS 신호의 오류제어부호의 성능 분석
 - (2) 분석을 기반한 새로운 설계 방식에 대한 성능

GPS CNAV 메시지 구조

CNAV : 패킷 형태 (L2신호, L5신호)

CRC

24 BITS

항법 메시지: 300 bits

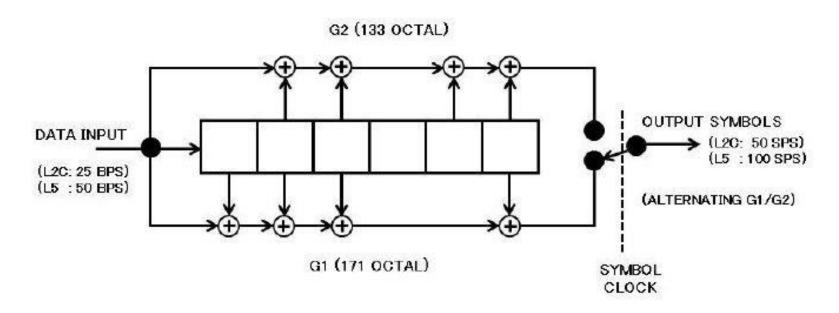
Figure 4.3.1-1 CNAV(L2C,L5) Message Configuration

MESSAGE

76 LSBs

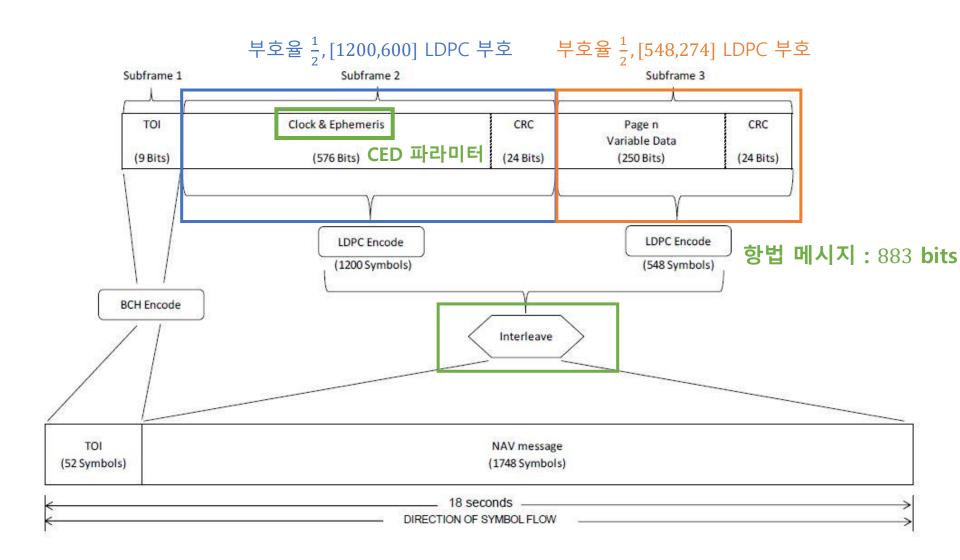
GPS CNAV 메시지 구조

Table 4.3.1-1 Maximum Transmission Intervals


CED 파라미터

Message Data	Format (Message Type ID)	Maximum Transmission Interval of L2C (seconds)	Maximum Transmission Interval of L5 (seconds)	Remarks
SV clock	Types 30 to 37, 61	48	24	
Ephemeris	Types 10 and 11	48	24	
Group delay	Туре 30	288	144	
Ionospheric parameter (wide area)	Type 30	288	144	
Ionospheric parameter (Japan area)	Type 61	288	144	
QZS reduced almanac	Type 12 or 31	1200*	600*	Max. 9 QZSs
QZS Midi almanac	Type 37	7200*	3600*	Max. 9 QZSs
Earth orientation parameter	Type 32	1800	900	
UTC parameter	Type 33	288	144	
GGTO	Type 35	288	144	
Text message	Type 15	0.21	0.23	Not specified

GPS CNAV 메시지 구조



부호율 $\frac{1}{2}$, [171,133]₈ 컨볼루셔날 부호

GPS CNAV2 메시지 구조

- Clock corrections and ephemeris data (CED)
 - 수신자의 위치를 결정하는 중요한 파라미터

CNAV

- 패킷 형태의 메시지 구조
 - Type 10, 11 : CED 파라미터 포함
- 각 프레임 별 동일한 성능의 오류제어부호 적용
 - [171,133]₈ 컨볼루셔날 부호

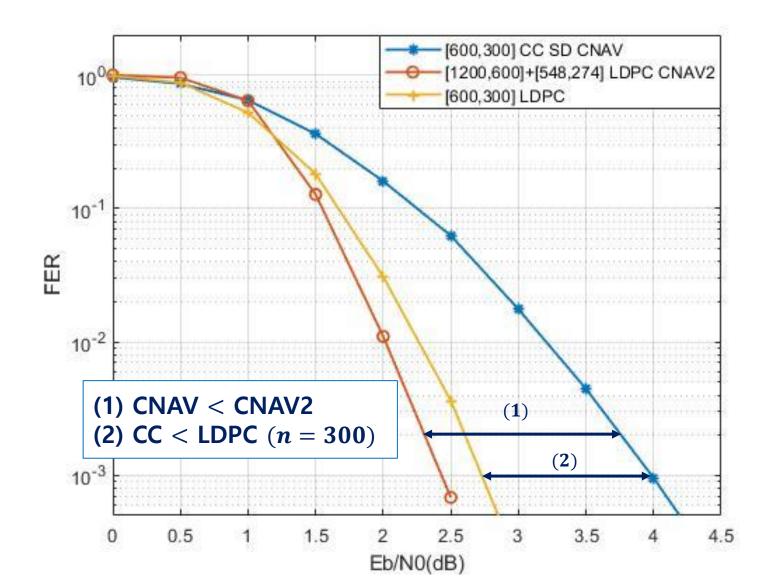
CNAV2

- 3개의 서브프레임이 연접한 메시지 구조
- 서브프레임 별 다른 성능의 오류제어부호 적용
 - 서브프레임1 : [51,8] BCH 부호, 프레임 동기, 항법 데이터 X
 - 서브프레임2 : [1200,600] LDPC 부호, **CED 파라미터(중요)**
 - 서브프레임3 : [548,274] LDPC 부호, type 별 다른 내용

- Clock corrections and ephemeris data (CED)
 - 수신자의 위치를 결정하는 중요한 파라미터

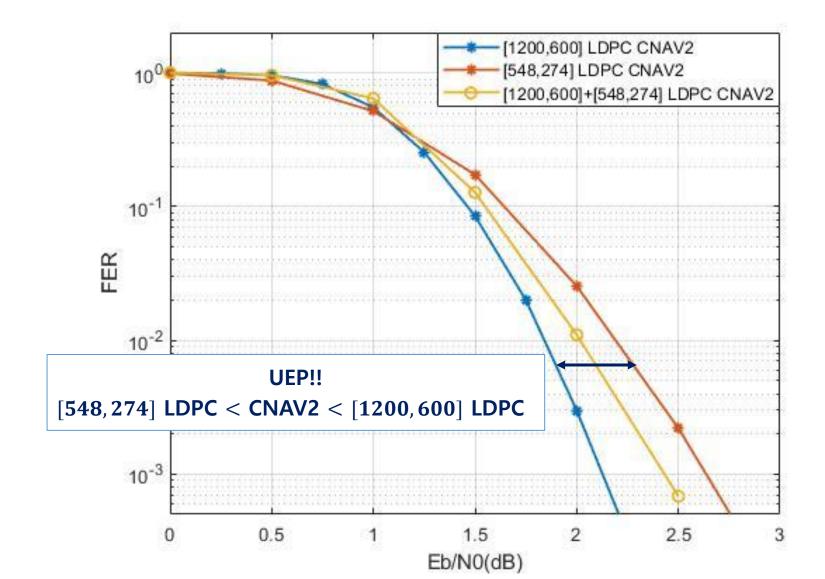
CNAV

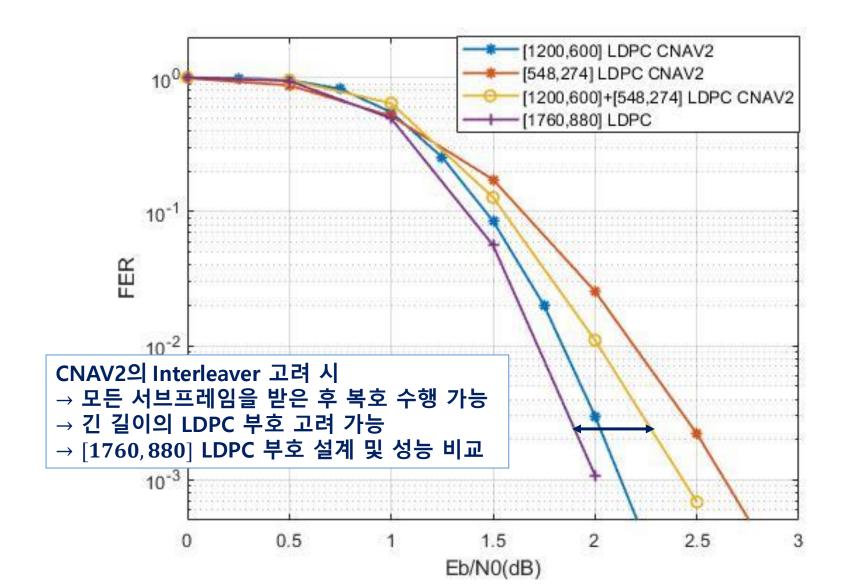
- 패킷 형태의 메시지 구조
 - Type 10, 11 : CED 파라미터 포함
- 각 프레임 별 동일한 성능의 오류정정부호 적용
 - [171,133]₈ 컨볼루셔날 부호


CNAV2

- 3개의 서브프레임이 연접한 메시지 구조
- 서브프레임 별 다른 성능의 오류정정부호 적용
 - 서브프레임1: [51,8] BCH 부호, 프레임 동기, 항법 데이터 X
 - 서브프레임2 : [1200,600] LDPC 부호, **CED 파라미터(중요)**
 - 서브프레임3 : [548,274] LDPC 부호, type 별 다른 내용

UEP 기법?





결론

- GPS CNAV/CNAV2
 - 메시지 구조에 대한 이해
 - 오류정정부호 성능 분석
 - 현대화 신호의 오류제어부호 성능이 좋음
- CNAV2의 UEP 기법 적용 확인
 - CED 파라미터에 유무에 따른 데이터 중요 차이
 - Interlever 고려 시, 서브프레임 2, 3을 받은 후 복호 수행
 - CNAV2와 동일한 길이의 LDPC 부호 설계 후 비교
 - CNAV2 < 설계한 LDPC 부호
 - LDPC의 경우 길이가 길어질 수록 좋은 성능을 보인다고 알려짐
- 추후 현대화 위성 신호를 위한 오류제어부호 연구가 필요

QnA

경청해 주셔서 감사합니다.