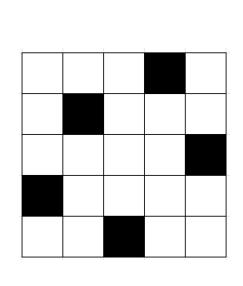


소나 코드의 다양한 성질과 최적화

채상원, 김현진, 김소상, 송홍엽 연세대학교


본 논문은 extended sonar sequence에 대해 논문 [1]에 이어 $m \le 13$ 까지의 best-known case를 제시함. 또한 논문 [2]의 Non-Attacking Kings의 정의를 이용하여, sonar sequence의 Zero Correlation Zone (ZCZ)의 range를 정의하고 sonar sequence와 blank가한 개인 extended sonar sequence에 대해 크기별로 range의 최댓값에 대해 정리함.

I. 서론

- Sonar sequence와 extended sonar sequence는 Distinct Difference Property (DD 속성)을 만족하는 수열로, Active SONAR system에 사용됨.
- 본 논문에서 extended sonar sequence의 $m \le 13$ 까지의 best-known case를 제시함.
- 추가로, sonar sequence와 공백이 한 개인 extended sonar sequence에 대해 크기별로 peak를 찾기 쉽게 하기 위한 range의 최댓값을 찾는 연구 및 전수조사를 진행함.

Ⅱ. 본론

- Sonar Sequence: 0에서 m-1까지 n개의 정수로 구성된 수열 $a_1,a_2,...,a_n$ 이 DD 속성을 갖는 경우, 이는 (m,n) sonar sequence라고 함 [1].
- **DD 속성:** 정수 수열 $a_1, a_2, ..., a_n$ 이 $1 \le i < i + h \le n$, $1 \le j < j + h \le n$ 에서, $a_{i+h} a_i = a_{j+h} a_j$ 이면 i = j를 만족할 때 DD 속성이라고 함 [1].
- Extended Sonar Sequence: 0부터 m-1까지 n개의 정수와 k개의 공백 (*)으로 구성된 수열 $a_1,a_2,...,a_{n+k}$ 가 DD 속성 (*-i=*)을 가진다면 이는 (m,n,k) extended sonar sequence라고 함 [1].
- Zero Correlation Zone: Sonar sequence를 m×n binary matrix로 보면, 자기 상관함수 K(x,y)는 자기 자신과 (x,y)만큼 이동된 복사본과의 일치하는 점의 개수임. 자기상관 함숫값 중 K(0,0)을 peak라고 하며, peak 주변에 오직 0만이 나타나는 범위를 ZCZ라고 함. ZCZ = R을 peak를 제외한 중심으로부터 R 이내의 값이 모두 0인 값으로 정의함.
- **Example:** 아래는 (5,5) sonar sequence [2,4,1,5,3] 을 binary matrix로 표현한 것과 그것의 자기상관 함숫값을 나타낸 것으로, *ZCZ* = 2임. 가독성 및 편의를 위해 sonar sequence의 범위를 1부터 *m*까지로 나타냄.

0	0	0	0	0	1	0	0	0
0	0	0	1	0	0	0	1	0
0	0	0	1	0	1	1	0	0
0	1	1	0	0	0	1	0	1
0	0	0	0	5	0	0	0	0
1	0	1	0	0	0	1	1	0
0	0	1	1	0	1	0	0	0
0	1	0	0	0	1	0	0	0
0	0	0	1	0	0	0	0	0

Ⅲ. 결론

아래는 extended sonar sequence의 $m \le 13$ 까지의 best-known case임.

m	n	Best-known case of $(m,n,1)$ extended sonar
1	3	[1, *, 1, 1]
2	5	[1, *, 1, 2, 2, 1]
3	7	[1, 2, *, 3, 1, 3, 3, 2]
4	9	[1, 3, 3, 4, 2, 1, *, 4, 1, 4]
5	10	[1, 1, 4, 5, 1, 5, *, 3, 2, 4, 1]
6	12	[1, 2, 5, 3, 5, 1, *, 6, 6, 1, 5, 4, 1]
7	13	[1, 1, 4, 6, *, 2, 7, 6, 1, 7, 1, 5, 3, 4]
8	14	[1, *, 3, 7, 3, 6, 8, 1, 1, 7, 8, 5, 4, 2, 7]
9	16	[1, 9, 7, 9, 4, 1, *, 8, 1, 2, 9, 3, 7, 6, 9, 5, 5]
10	18	[1, 2, 7, 1, 9, 8, 10, 6, 4, *, 1, 8, 1, 4, 10, 7, 2, 2, 6]
11	19	[1, 11, 7, 7, 5, 8, 10, 2, 1, 6, 10, 3, 10, 5, 2, 8, *, 7, 8, 2]
12	19	[4, 7, 12, 10, 2, 1, 8, 5, 1, 10, 1, 12, *, 11, 4, 12, 2, 8, 9, 3]
13	21	[6, 4, 12, 7, 8, 4, 13, *, 2, 2, 9, 13, 10, 12, 1, 6, 9, 1, 13, 3, 13, 12]

아래는 (m,n) sonar sequence 와 (m,n,1) extended sonar sequence에 대해 가장 큰 ZCZ = R을 전수조사한 결과임. 빈 공간은 해당 크기에서 확인되지 않음을 의미함. "x"는 해당 크기에서 sonar sequence가 존재하지 않음을 의미함.

R (k = 0)			n - m										n - m									
		0	1	2	3	4	5	6	7	8	(k	= 1)	0	1	2	3	4	5	6	7	8	9
	1	-	0	Х	Х	Х	Х	Х	Х	Х		1	-	1	0	Х	Х	Х	Х	Х	Х	Х
	2	1	1	0	Х	Х	Х	Х	Х	х	-	2	2	1	1	0	Х	Х	Х	Х	Х	х
	3	1	1	1	0	Х	Х	Х	Х	х		3	2	1	1	1	0	Х	Х	Х	Х	х
	4	1	1	1	1	0	Х	Х	Х	Х		4	2	2	2	1	1	0	Х	Х	Х	Х
	5	2	1	1	1	1	Х	Х	Х	Х		5	2	2	2	1	1	1	Х	Х	Х	х
	6	2	2	1	1	1	0	Х	Х	Х		6	2	2	2	2	1	1	Х	Х	Х	Х
	7	2	2	2	1	1	0	Х	Х	х		7	2	2	2	2	2	1	0	Х	Х	Х
	8	2	2	2	1	1	1	Х	Х	Х		8	3	2	2	2	2	1	1	Х	Х	Х
	9	2	2	2	2	1	1	Х	Х	Х		9	3	2	2	2	2	2	1	0	Х	Х
	10	2	2	2	2	2	1	0	Х	Х	1	10	3	3	2	2	2	2	1	1	0	Х
	11	2	2	2	2	2	1	1	Х	Х	m	11	3	3	3	2	2	2	1	1	0	Х
	12	3	3	2	2	2	1	1	Х	Х		12	3	3	3	3	2	2	2	1	Х	Х
	13	3	3	2	2	2	2	1	Х	Х		13	3	3	3	3	2	2	2	2	0	Х
	14	3	3	3	2	2	2	1	0	х		14	3	3	3	3	2	2	2	1		
m	15	3	3	3	3	2	2	1	0	х		15	3	3	3	3	3	2				
	16	3	3	3	3	2	2					16	3	3	3	3	3					
	17	3	3	3	3	2						17	3	3	3	3	3					
	18	3										18	4	3	3	3						
	19	3										19										
	20	3										20										
	21	3																				
	22	4	3																			
	23	4																				
	24	4																				
	25	4																				
	26	4																				

[1] O. Moreno, S. W. Golomb and C. J. Corrada, "Extended sonar sequences," Proceedings of 1995 IEEE International Symposium on Information Theory, pp. 464-, 1995.

[2] S. W. Golomb and H. Taylor, "Constructions and properties of Costas arrays," Proceedings of the IEEE, vol. 72, no. 9, pp. 1143-1163, 1984.

