

A construction of QC-LDPC codes using Golomb rulers generated from sonar sequences

Xiaoxiang Jin, Sangwon Chae, Hong-Yeop Song

Yonsei Univ. KICS Summer Conference 2023

- I. Introduction
- II. Proposed method
- III. Simulation
- IV. Conclusion

I. Introduction

- II. Proposed method
- III. Simulation
- IV. Conclusion

QC-LDPC codes [1]

- A simpler structure & Good error-correcting performance.
- The multiplication table method

 $M \times N$ Exponent matrix

$$E = \begin{bmatrix} e(1,1) & e(1,2) & \cdots & e(1,N) \\ e(2,1) & e(2,2) & \cdots & e(2,N) \\ \vdots & \vdots & \ddots & \vdots \\ e(M,1) & e(M,2) & \cdots & e(M,N) \end{bmatrix}$$

where e(i, j) = e(i, 1)e(1, j).

Cyclically shift the $P \times P$ circular permutation matrices (CPM) by each element of E and substitute into that element. $\rightarrow MP \times NP$ H-matrix

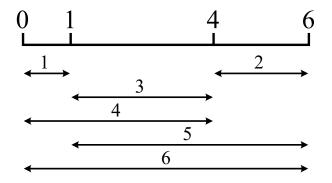
M. P. C. Fossorier, "Quasicyclic low-density parity-check codes from circulant permutation matrices," IEEE Transactions on Information Theory, vol. 50, pp. 1788–1793, 2004.

Golomb ruler

Definition (Golomb ruler [2])

A set of integers $G = \{g_1, g_2, ..., g_N\}$ where $g_1 < g_2 < \cdots < g_N$ is an *N*-mark **Golomb ruler** iff

 $g_i - g_j$ are all different


for $i, j \in [1, 2, ..., N]$ such that $i \neq j$.

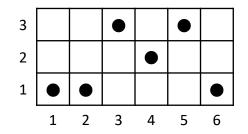
 $L = g_N - g_1$ is called the **length** of a Golomb ruler.

[2] A. Dimitromanolakis, "Analysis of the Golomb ruler and the Sidon set problems, and determination of large, near-optimal Golomb rulers," Master's Thesis, Department of Electronic and Computer Engineering, Technical University of Crete, June 2002.

• Example

 $\{0, 1, 4, 6\}$ is a 4-mark Golomb ruler.

Sonar sequence


Definition (Sonar sequence [5])

A sequence $S = [s_1, s_2, ..., s_n]$ is an (m, n) sonar sequence of length n over the set of integers $\{1, 2, ..., m\}$ iff $s_{u+r} - s_u$ are all different for the same rwhere $r \in [1, 2, ..., n - 1], u \in [1, 2, ..., n - r]$.

[5] O. Moreno, R. A. Games, and H. Taylor, "Sonar Sequences from Costas Arrays and the Best Known Sonar Sequences with up to 100 Symbols," IEEE Transactions on Information Theory, vol. 39, no. 6, pp. 1985-1987, 1993.

• Example

[1, 1, 3, 2, 3, 1] is a (3, 6) sonar sequence.

A construction of QC-LDPC codes using Golomb rulers [3]

• The construction of exponent matrix

$$E = \begin{bmatrix} e(1,1) & e(1,2) & \cdots & e(1,N) \\ e(2,1) & e(2,2) & \cdots & e(2,N) \\ e(3,1) & e(3,2) & \cdots & e(3,N) \end{bmatrix}$$

where e(i, j) = e(i, 1)e(1, j) such that $\{e(i, 1) = i | i = 1, 2, 3\}$, e(1, j) is a Golomb ruler.

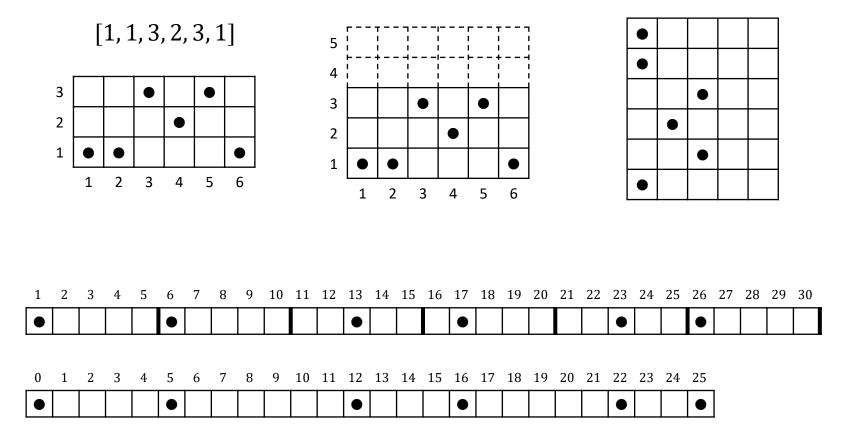
Theorem [3]

The QC-LDPC codes from the construction have girth-8 if P > 2L, where P is the size of CPM and L is the length the Golomb ruler.

[3] I. Kim and H.-Y. Song, "A construction for girth-8 QC-LDPC codes using Golomb rulers," Electronics Letters, vol. 58, no. 15, pp. 582-584, July 2022.

• This paper presents a QC-LDPC code constructed using Golomb rulers generated from sonar sequences.

I. Introduction


II. Proposed method

- III. Simulation
- IV. Conclusion

Proposed method

• A method for transforming the sonar sequence into the Golomb ruler.

(0, 5, 12, 16, 22, 25) is a 6-mark Golomb ruler.

Proposed method

Theorem 1

Let $S = [s_1, s_2, ..., s_n]$ be an (m, n) sonar sequence. If the integer $t \ge 2m - 1$, then $G = \{g_i | g_i = (i - 1)t + s_i\}$ is a *n*-mark Golomb ruler for i = 1, 2, ..., n.

A (3,6) sonar sequence [1,1,3,2,3,1], take t = 2m - 1 = 5.

$$\begin{split} g_1 &= (1-1) \times 5 + 1 = 1 \quad , \qquad g_2 = (2-1) \times 5 + 1 = 6 \quad , \\ g_3 &= (3-1) \times 5 + 3 = 13 \quad , \qquad g_4 = (4-1) \times 5 + 2 = 17 \quad , \\ g_5 &= (5-1) \times 5 + 3 = 23 \quad , \qquad g_6 = (6-1) \times 5 + 1 = 26 \quad . \end{split}$$

$$\Rightarrow$$
 A 6-mark Golomb ruler (0, 5, 12, 16, 22, 25).

Proposed method

• The minimum length L_{min} of Golomb ruler in Theorem 1:

$$L = g_n - g_1$$

= $(n - 1)t + s_n - s_1$
 $\ge (n - 1)(2m - 1) + 1 - m = L_{min}$

 \Rightarrow In order to have girth-8, P > 2L,

code length $N_c = nP > 2nL_{min}$.

• Using the given sonar sequence, obtain the Golomb ruler from Theorem 1 and construct a QC-LDPC code of length N_c .

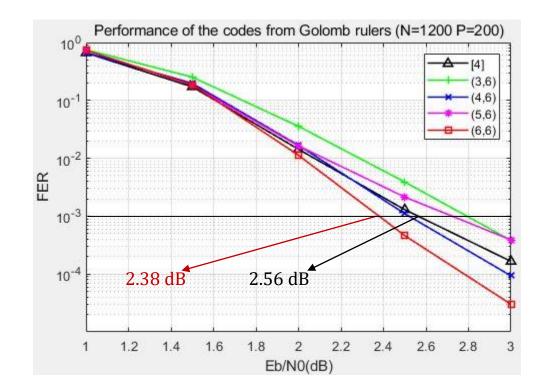
- I. Introduction
- II. Proposed method
- III. Simulation
- IV. Conclusion

Simulation

We chose several (m, 6) sonar sequences where $m \le 6$ all possible values, According to [5].

(<i>m</i> , <i>n</i>)	sonar sequence	Golomb ruler
(3,6)	[1,1,3,2,3,1]	(0,5,12,16,22,25)
(4,6)	[1,3,4,4,2,1]	(0,9,17,24,29,35)
(5,6)	[1,3,4,2,5,4]	(0,11,21,28,40,48)
(6,6)	[1,5,4,6,2,3]	(0,15,25,38,45,57)

Compare with the best performing (0,1,8,12,14,91) [4] using optimal Golomb ruler (0,1,8,12,14,17) when $N_c = 1200$, rate = 0.5.


- [4] D. Kim, I. Kim, H. Cho, H. Choi, and H.-Y. Song, "Performance Analysis of QC-LDPC codes constructed by Some New Golomb Rulers," The 27th Asia-Pacific Conference on Communications (APCC 2022), Oct. 2022.
- [5] O. Moreno, R. A. Games, and H. Taylor, "Sonar Sequences from Costas Arrays and the Best Known Sonar Sequences with up to 100 Symbols," IEEE Transactions on Information Theory, vol. 39, no. 6, pp. 1985-1987, 1993.

Simulation

 $N_c = 1200$, rate = 0.5.

AWGN channel, BPSK modulation, Sum-product decoding.

[4] D. Kim, I. Kim, H. Cho, H. Choi, and H.-Y. Song, "Performance Analysis of QC-LDPC codes constructed by Some New Golomb Rulers," The 27th Asia-Pacific Conference on Communications (APCC 2022), Oct. 2022.

- I. Introduction
- II. Proposed method
- III. Simulation
- IV. Conclusion

Conclusion

- A method for generating a Golomb ruler from a sonar sequence was presented.
- Performance simulations were performed on QC-LDPC codes generated using sonar sequences.
- Further research:

Construct QC-LDPC codes with more diverse sonar sequences and analyze their performance.