Fast Algorithm of Checking the Equivalence of

Hadamard Matrices

Min-Ho Shin, Hong-Yeop Song

Dept. of Electrical and Computer Engineering, Yonsei University

This work was supported by the Basic Research Program of the Korea Science and
Engineering Foundation under the grant number 97-0100-0501-3.

Abstract

In this paper, an algorithm of checking equivalence of Hadamard matrices is proposed.
This algorithm is based on the relation between equivalence operation of Hadamard
matrices and sorting. We present some computational results of checking equivalence of

Hadamard matrices using this algorithm.

I . Introduction

Hadamard matrices have some interesting struc-
tures and thus have been widely studied and used in
the area of algebraic coding theory, communication
systems engineering and image processing. In the
area of wireless communication system design, one
of the recent successful applications of the Hadamard
matrices is their use of well known as Walsh codes
of length 64, which are exactly the same as all the
rows of a Hadamard matrix of order 64 recursively
constructed by Kronecker product[1],[2],[4].

A Hadamard matrix H of order =
an nxn

that[1]

is defined as
matrix with all entries +1, or -1 such

H-HT = »lL 4]

This implies any two rows of H are orthogonal.
The orthogonal property of Hadamard matrices does
not change by any of the following four operations:

(i) multiply some columns by -1

(i1) multiply some rows by -1

(iii) column permutations

(iv) row permutations
Two Hadamard matrices related by some combination
of the above four operations are called equivalent[1].
For a given Hadamard matrix we can find an
equivalent one whose first row and first column
contains +1 only. Such a Hadamard matrix is called
normalized[1]. Hadamard matrices were first
introduced by Jacques Hadamard in 1893. And yet,
despite much attention by numerous researchers, the
central question of the existence has not been

completely answered. At present it is the order 428
for which no example is
non-existence is yet proved [4].
And still less is known about the classification of
Hadamard matrices for general so far, the
number of inequivalent Hadamard matrices of order
n is known only for » < 28 . These results are
summarized as in the following table[3],[6].

known and no

n -

Table 1. Number of inequivalent classes of
Hadamard matrices of order n (n<28)

order n<l12 16 20 24 28
number of
inequivalent 1 5 3 60 487
classes

In this paper, computational complexity of checking
the equivalence of Hadamard matrices are described
in SectionIl. In Section @I, we present a fast
equivalence-checking algorithm which lays its key
idea on the relation between equivalence operation
and sorting. We then present some computational
results in Section IV. Finally in Section V, this
paper is concluded with some discussions on the
results and with some remarks on further research.

II. Computational Complexity

For a given Hadamard matrix of order 1z, we can
find equivalent ones by using some combinations of
four equivalence operation described in Section I.



The number of such matrices are upper bounded by

(27xn!)? since there are 2” ways of column(and
row) multiplication by -1 and a! ways of
column(and row) permutation(see Fig.l.). Since such
matrices are all candidates for the equivalence-check
algorithm, the complexity of the algorithm depends
on the number of candidates.

2" multiplications

AN
#1 -1 - -1 -1
+1
2 : : n! permutations
+]1
-1 +1
N

n!

Fig.1. Number of candidates by 4-equivalence
operation : (2 7xna!)*cases

Since we can always make a given Hadamard
H to be normalized, we can confine
equivalence operations only to row(and/or column)
permutations. This reduces the number of candidates
((n — DH? as

matrix

for equivalence-check to be
shown in Fig.2.

+l cen +1

(n — 1)

+1

%/_/

(n — 1)

Fig.2. Number of candidates with normalized
form: (2 - 1)! x (2 — 1)! cases

Making the natural transition from the multiplicative
group of order two, { -1, +1 1}, to the additive
{0, 1 }, we can represent Hadamard

group, nxn

matrices with » binary column vectors or row
vectors( n—tuple). Then as shown in Fig3. by
reading binary column(or row) vectors as decimal
values and by applying normal sorting columnwise
(or rowwise), we can reduce the number of

candidates for equivalence-check by (2 — 1)! .

In the remaining of this paper, we will describe a
proposed equivalence-checking algorithm, and then
analyze its computational complexity in terms of the
number of candidates for the equivalence-check. For
example if a normalization is considered(as in Fig.2.)

we say the algorithm has ((n — 1HN?

-complexity, and in case of Fig.3. (n — 1)
—complexity.
binary
0 0 - n-tuple
row vectors
are sorted
0
-
(n — 1)

Fig.3. Number of candidates by sorting
row vectors : (n — 1)! cases

M. Main Algorithm

In this section, we will describe our main
equivalence-check algorithm. For convenience, we
will consider binary Hadamard matrices
GF(2 ). The idea that the specific column(or row)
permutation can be done by sorting is applied both
columnwise and rowwise, i.e. for a given Hadamard

over

matrix H we first normalize it and then carry out
row-sorting and column-sorting successively and
repeatedly until both rows and columns are com-
pletely sorted. This procedure reduces the complexity
of the checking algorithm.

For example let’s apply this procedure to a
Hadamard matrix H,g shown in Fig.4. which is

constructed by Sylvester method[11[4].

00000000 <« 0
01010101 <« &
00110011 <« sl
01100110 <« 102
00001111 <« 15
01011010 <« %
00111100 <« 60
01101001 <« 10
rrrrrr

0 8 51 102 15 90 60 105

Fig 4. H, constructed by Sylvester method



In Fig.4, the decimal value of each 8-tuple binary
vector is shown. We then apply above procedure:
column-sorting and row-sorting iteratively. This
gives the following transformed matrix H,; a
sorted one(see Fig.5.).

00000000 <« 0
00001111 <« 15
00110011 <« 5l
00111100 <« 60
01010101 <« &
01011010 <« %
01100110 <« 102
01101001 <« 10
rrrrrr

0 15 51 60 8 90 102105

Fig 5. H 'y equivalently transformed(sorted)

Observing the resulting matrices, one can notice
that this procedure transforms given Hadamard
matrices into those which are as symmetric as
possible. Using this transform-like procedure, we
then propose the following equivalence—check algo-
rithm of Hadamard matrices.

Making candidates (Procedure A):
(a) choose p [permutation number]

(b) given H, test_num=0

(¢) normalize H

(d) row-sorting

(e) column-sorting

(f) If not row sorted then [Go to (d)]

(g) store the resulting matrix as candidate H
[test_num = test_num+1]
(h) If test_num<p

then [permute H, Go to (¢)]
(1) candidates are determined. STOP

Equivalence check -
(1) given H,, H, , test_num=0
(2) make all candidates of
A
(3) make a candidate of
(c) to (g) of procedure A
(4) If one of candidates of
Hy
then [ H, and H, are equivalent, STOP]

(5) If test_num < p
then [test_num=test_num+1, Go To (3)]

H, using the procedure

H, using only steps from

H, is the same as

(6) H, and H, are inequivalent. STOP

As described in the algorithm, to make candidates
using sorting, we should check if the algorithm
terminate.

Theorem. Given a Hadamard matrix H, the
Step(g) of the procedure A can be reached in a
finite number of steps. That is, Making Candidates
algorithm terminates.

proof : After normalized in Step (c), the algorithm
repeats row-sorting(Step (d))—column-sorting(Step
(e)), until both rows and columns are completely
sorted. In Step (f), the resulting matrix is column
sorted but possibly not row sorted, say decimal
value of i‘th row is greater than one of decimal
values of following rows, say decimal value of j'th
row(j>7) is minimum among such rows.(see Fig.6.)
Then at Step (d) row sorting will permute row
vectors as shown in Fig.7.

Since one more column-sorting(Step (e)) does not
affect the first { row vectors, we can say at least
the first i row vectors are sorted in Step (f). Hence
the algorithm terminates. M

k’th column

!
i-1
rows A ) B
are
sorted
a 1 <~ {'th row
a 0 <« j'th row
—

columns are sorted

Fig.6. Case of in Step (f) that rows are not sorted
completely



k’th column
!
A E B
s/
— a 0 <~ {'th row
are

sorted

one more column

sorting affects at

most this block of
column vectors

Fig.7. Matrix form when Step (d) is over
IV. Some Computational Results

In this section we present some computational
results of our main algorithm. For this, we construct
possibly inequivalent Hadamard matrices of order 16
by the following method.[5].

Consider the Sylvester type Hadamard matrix

H.;s. We can construct such a matrix with Hg
(also a Sylvester-type) as follows[1],[4].

H, Hy

Hi= Hg® H, =

H, H

8
(2)
different Hadamard
matrices of order 16 by row permutation of Hg in
the first block[5]. As introduced in Section I there
are five inequivalent classes of Hadamard matrices
of order 16. Applying our algorithm with the
permutation number in Step (a) to be 16, and
permutation in Step (h) to be cyclic rotation of
column vectors, we have classified all 8! such
matrices into 4 inequivalent classes. These results
are summarized as in the following table.

Then we can construct 8!

Table2. Computational Results of checking equivalence of

the 16x16 Hadamard matrices

Equivalence Computer search
class results
HY 1,344
3K 9,408
H?3 18,816
HS 0
Hj 10,752

Here, each equivalence class in the table also gives
information about the equivalence class of its

transpose: the superscript denotes the matrix
equivalence class of the transpose. Thus Ht
indicates its transpose is in the class of HS[11].

V. Concluding Remarks

We have proposed an equivalence-check algorithm
of Hadamard matrices. The algorithm is based on a
relation between equivalence operation and sorting:
using this idea we reduced the computational
complexity by reducing the number of candidates to
be checked. Some computational results with this
algorithm of n—complexity was presented in Section
IV, which has been done in 40[sec] with Pentium
MMX-266 processor.

As a future work, some algebraic analysis of this
algorithm perhaps by design theory or graph theory
is desirable to apply this algorithm for a higher
order of Hadamard matrices with lesser complexity.

REFERENCES

[1] J. H. Van Lint & R. M. Wilson, A Course In
Combinatorics, Cambridge University Press,
1992.

[2] CIA/TIA/IS-95 Mobile Station -- Base Station
Compatibility Standard for Dual-Mode Sideband
Spread Spectrum Cellular System, Published by
Tele communication Industry Association as a
North American 1.5MHz Cellular CDMA Air -
Interface Standard, July, 1993.

[3] H. Kimura, "Classification of Hadamard matrices
of order 28", Discrete Math., Vol. 133, pp.
171-180, 1994

[4] M. Hall Jr, Combinatorial Theory, Second Ed,
John Wiley and Sons, 1986.

[5] J-S. No & H.-Y. Song, “Generalization of
Sylvester-Type Constructions for Hadamard
Matrices”, preprint, 1999.

[6] N. J. A. Sloane, On-Line Encyclopedia of Inte-
ger Sequences, sequence no 1,1,1,5,3,60,487
http://www .research.att.com/ njas/sequences/inde
x.html, 1999.



