

Registration and Session-Key Distribution in AAA for Mobile IP

Jae-Hoon Whang, Hong-Yeop Song jhwhang@eve.yonsei.ac.kr

Coding & Information Theory Lab. Department of Electrical and Electronic Engineering, YONSEI UNIV.

Contents

- 1. Introduction
- 2. Mobile IP and AAA
- 3. Conventional Registration Protocol and Replay Attack
- Proposed Public-Key Based Registration and Session –Key Distribution
- 5. Conclusion

1. Introduction

- Mobile IP aims to support mobility within the internet.
- We'll mention the security aspect of Mobile IP,
- And propose a new registration and sessionkey distribution protocol using public-key cryptography.

2. Mobile IP and AAA

2. Mobile IP and AAA

- Authentication, Authorization and Accounting (AAA)
 - Authentication : validating the end user's identities prior to permitting them network access
 - Authorization : defines what right and services are allowed to the end user
 - Accounting : provides the methodology for collecting information about end user's resource consumption

2. Mobile IP and AAA

 Authentication, Authorization and Accounting (AAA) (Cont')

3. Conventional Registration Protocol and Replay Attack

Registration Protocol

The following notations are used to represent message in protocol

- M, N : concatenation of two messages M and N
- MN_{HM} : MN's home address
- MN_{COA} : MN's care-of-address
- HA_{id} : HA's IP address as its ID
- FA_{id} : FA's IP address as its ID
- $\,$ N_{MN}, N_{HA} : nonce issued by MN and HA
- {M}K : encryption of message M under key K
- <M>K : MAC value of message M under key K
- S_{MN-HA} : shared secret key between MN and HA
- Req : a bit pattern indicating a request
- Rep : a bit pattern indicating a reply
- Result : a value of indicating result of the request

3. Conventional Registration Protocol and Replay Attack

- Design principles
 - Minimize the computing power requirement as well as administration cost imposed on MN
 - Use mechanism for certificate retrieval and validation
 - Provide a secure session-key distribution
 - And we assume secure association(SA) between
 FA & AAAF, and HA & AAAH.

JULY 6. 2001

- New notations are related to public-key operation and session-key
 - **K**_{AAAH}, **K**_{AAAF} : public key of AAAH and AAAF, respectively;
 - K^{-1}_{AAAH} , K^{-1}_{AAAF} : private key of AAAH and AAAF, respectively;
 - <<M>>K⁻¹_A : digital signature of message M generated using private key of A;
 - **Cert_{AAAH}, Cert_{AAAF}** : certificate of AAAH and AAAF, respectively;
 - **AD** : a bit pattern indicating an advertisement;
 - Key-Req, Key-Rep : bit patterns of session-key request and reply, respectively;
 - **S_{MN-AAAH}** : shared secret key between MN and AAAH;
 - S_{MN-FA}, S_{MN-HA}, S_{HA-FA} : session-keys generated by AAAH, shared by MN & FA, MN & HA, and HA & FA, respectively;

- The protocol
 - **R1)** AAAF->FA->MN : A, $\langle A \rangle > K^{-1}_{AAAF}$, Cert_{AAAF} where A = AD, FA_{id}, AAAF_{info}
 - **R2)** MN->FA : C, $\langle C \rangle S_{MN-AAAH}$ where C = Req, N_{MN}, N_{AAAH}, MN_{HM}, HA_{id}, FA_{id}, AAAF_{info}, Key-Req, B B = A, $\langle \langle A \rangle \rangle K^{-1}_{AAAF}$, Cert_{AAAF}
 - **R3)** FA->AAAF : D where D = C, $\langle C \rangle S_{MN-AAAH}$

- R4) AAAF->AAAH : D, N_{AAAF}
- (upon receipt of R4) AAAH : validate $<C>S_{MN-AAAH}$ using $S_{MN-AAAH}$, check whether FA_{id} in B = FA_{id} in C, validate $Cert_{AAAF}$ based on existing PKI at AAAH, validate $<<A>>K^{-1}_{AAAF}$ using authenticated K_{AAAF} .
- R5) AAAH->HA : Req, MN_{HM}
- R6) HA->AAAH : Rep, Result

- **R7)** AAAH->HA : S_{MN-HA} , S_{HA-FA} AAAH->AAAF : F, <<F>>K⁻¹_{AAAH}, Cert_{AAAH} where F = E , <E>S_{MN-AAAH} , N_{AAAF} , S_{MN-FA} , S_{HA-FA} , K_{AAAF} E = Rep, Result, N_{MN} , N'_{AAAH} , HA_{id} , FA_{id} , $AAAF_{info}$, S_{MN-HA} , Key-Rep
- (upon receipt of R7)
 AAAF : validate N_{AAAF},
 validate Cert_{AAAF} based on existing PKI at AAAF,
 validate <<F>>K⁻¹_{AAAH} using authenticated K_{AAAH}

- **R8)** AAAF->FA : E,
$$\langle E \rangle S_{MN-AAAH}$$
, S_{MN-FA} , S_{HA-FA}

- R9) FA->MN : E, <E>S_{MN-AAAH}
- (upon receipt of R9)
 MN : validate <E>S_{MN-AAAH} using S_{MN-AAAH}

5. Conclusion

- In this paper, we proposed a new protocol about public-key based registration and session-key distribution
- This protocol guarantees safe registration and provides the secure communication with session-key.
- MN still relies on the use of secret key so, can't provide the non-repudiation service.