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1. Introduction (1)

 Linear Complexity(LC) of a sequence
; The size of the shortest Linear Feedback Shift Register(LFSR) which can
generate the sequence

 The difficulty of generating or analyzing the sequence, from a few
successively observed symbols

 Important factor in the field of security ( i.e. stream cipher systems, 
military frequency hopping communications, etc.)
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1. Introduction (2)

 Assume that we observe                                         with 6 symbols,
then we must decide the following three choices 

1) Set of the symbols of S
 Field                                              or Integer residue ring

2) Mapping method from a symbol to an element of the set
 If the set is       , there are 6! mapping methods

3) When the set is an extension field, Generator polynomial of the field
 If the set is        , there are 2 generator polynomials

 After above three choices is decided, we can synthesize the characteristic polynomial of S
 Over field by Berlekamp-Massey (BM) algorithm

 Over integer residue ring by Reeds-Sloane (RS) algorithm
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1. Introduction (3)

 It may be possible that the characteristic polynomial and therefore, 

the LC of S is changed, when one of the above three choices is changed
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2. How to Evaluate the LC of Sequences (1)

 : a sequence of non-negative integers

 Mapping method that we use to evaluate the LC of S
 LC over

;                       (just an integer     , an element of        )

 LC over 
;                                          (p-ary k-tuple, an element of                ) 
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 We use
 BM algorithm to evaluate LC of S over a field with characteristic 2
 RS algorithm to evaluate LC of S over an integer residue ring and an odd prime field
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2. How to Evaluate the LC of Sequences (2)

 LC of a sequence may be changed, when the set of the symbols of the sequence is changed
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2. How to Evaluate the LC of Sequences (3)

 LC of a sequence may be changed, when the mapping method 
from a symbol of the sequence to an element of the set of the symbols is changed

 Mapping method is equivalent to a permutation of symbols of a sequence
 Evaluate the distribution of the LC of a sequence for permutations of the symbols
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2. How to Evaluate the LC of Sequences (4)

 LC of a sequence over an extension field may be changed, when the generator 
polynomial of the field is changed

 The change of the generator polynomial of an extension field is equivalent to the change
of the mapping method from a symbol of a sequence to an element of the field
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2. How to Evaluate the LC of Sequences (5)

 LC of a sequence should be evaluated, after the following three choices 
are decided

1) Set of the symbols of a sequence

2) Mapping method from a symbol to an element of the set

3) When the set is an extension field, Generator polynomial of the field
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2. How to Evaluate the LC of Sequences (6)
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3. Construction of a Non-Binary sequence with Unique
Linear Complexity Over Some Fields (1)

 We regard      
 as an integer (an element of             ) in  
 as a p-ary k-tuple (an element of                ) in 
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 : a sequence of non-negative integers
 k : positive integer
 p : least prime,

 A new sequence               from     

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3. Construction of a Non-Binary sequence with Unique
Linear Complexity Over Some Fields (2)
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3. Construction of a Non-Binary sequence with Unique
Linear Complexity Over Some Fields (3)

 From Lemma 1, the shortest LFSR generating S over               also generates T
over

 It is not always the shortest LFSR generating T over 

 Furthermore, the linear complexity of T over               cannot be uniquely determined
unless a generator polynomial of                is fixed
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3. Construction of a Non-Binary sequence with Unique
Linear Complexity Over Some Fields (4)
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 LC of S over = 62, 
But, LC of T (k =3) over                = 60 regardless of a generator polynomial

)2( 3GF LC of T (k =3) over                = 55 with a generator polynomial, 
But, LC of T (k =3) over                = 53 with a generator polynomial, 
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3. Construction of a Non-Binary sequence with Unique
Linear Complexity Over Some Fields (5)
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3. Construction of a Non-Binary sequence with Unique
Linear Complexity Over Some Fields (6)
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3. Construction of a Non-Binary sequence with Unique
Linear Complexity Over Some Fields (7)

 Theorem 1 and Theorem 2 is true when                is          , where m > k

 The shortest LFSR generating a binary sequence                 of integer 0 and 1 
with period       over              is also the shortest LFSR generating a binary 
k-tuple sequence               over                , where
and

 LC of T over                is uniquely determined regardless of a choice of 
a generator polynomial
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4. Acknowledgement

 LC of a sequence should be evaluated, after the following three choices 
are decided
1) Set of the symbols of a sequence
2) Mapping method from a symbol to an element of the set
3) When the set is an extension field, Generator polynomial of the field

 The shortest LFSR generating a binary sequence                 of integer 0 and 1 
with period       over              is also the shortest LFSR generating a binary 
k-tuple sequence                over               , where
and

 LC of  T over                is uniquely determined regardless of  a choice of 
a generator polynomial
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