

How to Evaluate the Linear Complexity of Sequences

Yun-Pyo Hong, Yu-Chang Eun, Hong-Yeop Song yphong@eve.yonsei.ac.kr

Oct. 13. 2001

Coding & Information Theory Lab. Department of Electrical and Electronic Engineering, Yonsei Univ.

1. Introduction

- 2. How to Evaluate the Linear Complexity of Sequences
- 3. Construction of a Non-Binary sequence with Unique Linear Complexity Over Some Fields
- 4. Acknowledgement
- 5. Reference

- ◆ Linear Complexity(LC) of a sequence
 - ; The size of the shortest Linear Feedback Shift Register(LFSR) which can generate the sequence
 - ⇒ The difficulty of generating or analyzing the sequence, from a few successively observed symbols
 - ⇒ Important factor in the field of security (i.e. stream cipher systems, military frequency hopping communications, etc.)

- ♦ Assume that we observe S = {A D E C F B ···} with 6 symbols, then we must decide the following three choices
- 1) Set of the symbols of *S*
 - \Rightarrow Field (*GF*(7), *GF*(8), *GF*(8), ...) or Integer residue ring ($Z_6, Z_7, Z_8, ...$)
- 2) Mapping method from a symbol to an element of the set
 - \Rightarrow If the set is Z_6 , there are 6! mapping methods
- 3) When the set is an extension field, Generator polynomial of the field
 - \Rightarrow If the set is *GF*(8), there are 2 generator polynomials
- After above three choices is decided, we can synthesize the characteristic polynomial of S
 - \checkmark Over field by Berlekamp-Massey (BM) algorithm
 - \checkmark Over integer residue ring by Reeds-Sloane (RS) algorithm

\checkmark It may be possible that the characteristic polynomial and therefore,

the LC of S is changed, when one of the above three choices is changed

Coding and Information Theory Lab.

- $S = \{s_n\}$: a sequence of non-negative integers
- Mapping method that we use to evaluate the LC of S
 - \checkmark LC over Z_m
 - ; $s_n \mapsto s_n$ (just an integer s_n , an element of Z_m)

✓ LC over
$$GF(p^k)$$

; $s_n \mapsto (v_1, v_2, \dots, v_k)$ (*p*-ary *k*-tuple, an element of $GF(p^k)$)
 $s_n = \sum_{i=1}^k v_n p^{k-i}$

• We use

- \checkmark BM algorithm to evaluate LC of *S* over a field with characteristic 2
- \checkmark RS algorithm to evaluate LC of *S* over an integer residue ring and an odd prime field

TABLE I

The linear complexity of S of Example 1.

Over	GF(3)	GF(4)	GF(5)	Z_6	GF(7)
LC	60	64	61	63	64

✓ LC of a sequence may be changed, when the set of the symbols of the sequence is changed

Coding	and	Information	Theory Lab.
		9	

- Mapping method is equivalent to a permutation of symbols of a sequence
 - \Rightarrow Evaluate the distribution of the LC of a sequence for permutations of the symbols

Example 2) S with period $8 = \{0 \ 1 \ 3 \ 7 \ 6 \ 5 \ 2 \ 4 \cdots \}$

TABLE II

The distribution of the linear complexity of S of Example 2 over GF(8).

LC	5	6	7	
No. of sequences	2688	5376	32256	

TABLE III

The distribution of the linear complexity of S of Example 2 over Z_8 .

LC	2	3	4	5	6	7
No. of sequences	128	256	768	5888	14848	18432

✓ LC of a sequence may be changed, when the mapping method from a symbol of the sequence to an element of the set of the symbols is changed

Example 3) S with period $64 = \{1 \ 3 \ 6 \ 4 \ 1 \ 4 \ 6 \ 6 \ 2 \ 0 \ 1 \ 1 \ 1 \ 3 \ 1 \ 3 \ 3 \ 6 \ 3 \ 4 \ 7 \ 4 \ 6 \ 1 \ 4 \ 6 \ 5 \ 4 \ 6 \ 6 \ 7 \ 7 \ 6 \ 3 \ 2 \ 5 \ 0 \ 3 \ 3 \ 3 \ 6 \ 3 \ 4 \ 7 \ 4 \ 6 \ 1 \ 4 \ 6 \ 5 \ 4 \ 6 \ 6 \ 5 \ 3 \ 3 \ 5 \ 1 \ 2 \ 4 \ 3 \ 6 \ \cdots \}$

TABLE IV

The linear complexity of S of Example 3.

Over	$GF(8)$ with gen. poly. $x^3 + x^2 + 1$	$GF(8)$ with gen. poly. $x^3 + x + 1$		
LC	59	61		

 LC of a sequence over an extension field may be changed, when the generator polynomial of the field is changed

: The change of the generator polynomial of an extension field is equivalent to the change of the mapping method from a symbol of a sequence to an element of the field

Coding and Information Theory Lab.

- ✓ LC of a sequence should be evaluated, after the following three choices are decided
 - 1) Set of the symbols of a sequence
 - 2) Mapping method from a symbol to an element of the set
 - 3) When the set is an extension field, Generator polynomial of the field

Example 4) Two 16-ary random sequences of Figure 1 and Figure 2

3 3 9 3 14 6 6 12 18 14 9 1 14 8 13 5 4 2 3 5 1 5 4 3 1 3 18 4 7 13 8 6 4 8 7 7 4 1 18 2 1 15 4 11 3 8 1 12 5 6 2 1 14 11 5 2 14 2 5 15 7 18 13 8 15 14 2 12 2 5 2 11 12 1 8 9 9 2 2 18 5 15 5 3 7 15 15 8 2 18 12 2 13 6 13 4 12 11 6 14 8 18 7 1 6 15 13 4 9 2 18 6 18 4 3 5 3 8 8 14 9 15 9 6 1 18 7 9 4 9 8 1 5 9 15 18 3 14 12 3 16 13 8 7 15 13 3 13 11 14 9 12 7 11 3 3 16 13 2 9 15 8 1 8 16 9 4 15 12 8 11 8 5 10 11 6 10 3 15 4 7 16 11 18 6 5 2 1 1 7 8 18 4 7 18 1 7 2 12 8 16 4 3 1 2 3 5 11 3 13 14 2 14 3 5 8 14 5 14 8 13 9 6 5 12 6 9 14 2 12 1 1 6 14 12 5 18 13 15 8 15 5 14 2 2 12 8 16 4 3 1 2 3 5 11 3 13 14 2 14 3 5 8 14 5 14 8 13 9 6

Fig. 1. S_1 with period 255

7 11 6 7 14 8 18 5 14 2 12 13 1 12 4 9 14 2 12 8 18 2 13 6 1 11 7 9 6 5 5 1 7 1 15 4 5 2 1 1 2 11 13 4 12 11 13 19 7 7 11 5 3 7 4 2 6 4 19 8 7 15 19 4 8 6 14 3 9 3 3 15 1 5 13 14 14 3 7 7 9 14 3 7 13 6 10 3 2 9 1 15 4 7 7 14 1 1 9 11 4 3 7 7 3 7 4 3 8 12 1 1 6 15 13 6 1 9 6 3 3 9 3 4 5 4 5 8 11 18 18 3 11 18 4 8 15 9 18 11 9 15 14 14 7 2 15 18 7 7 3 7 4 3 8 12 1 1 6 15 13 6 1 9 6 3 3 9 3 4 5 4 5 8 11 18 18 3 11 18 4 8 15 9 18 11 9 15 14 14 7 2 15 18 7 7 3 7 4 3 8 12 1 1 6 15 13 6 1 9 6 3 3 9 3 4 5 4 5 8 11 18 18 3 11 18 4 8 15 9 18 11 9 15 14 14 7 2 15 18 7 7 3 7 15 8 17 18 18 18 18 18 18 18 18 18 18 7 18 7 18 7 18 7 18 7 18 7 18 7 18 1 15 11 11 8 7 11 8 14 6 12 6 7 11 6 3 0 14 9 7 14 4 3 2 6 3 4 6 6 15 0 6 6 19 4 8 14 18 13 12 11 13 6 12 11 11 1 8 18 18 8 3 1 7 3 2 15 12 12 5 10 12 2 8 6 1 11 12 8 8 14 10 13 11

Fig. 2. S₂ with period 255

TABLE V

The linear complexity of two 16-ary random sequences of Example 4 ($GF(16)_3$: GF(16)

WITH A GENERATOR POLYNOMIAL $x^4 + x + 1$, $GF(16)_9$: WITH $x^4 + x^3 + 1$).

	Z_{16}	$GF(16)_{3}$	$GF(16)_{9}$	GF(17)	Z_{18}	GF(19)	Z_{20}
LC of S_1	255	253	253	255	254	254	255
LC of S_2	255	252	250	255	255	254	255

Coding and Information Theory Lab.

- 11/20 -

Oct. 13. 2001

- $S = \{s_n\}$: a sequence of non-negative integers
 - $\checkmark k$: positive integer
 - $\checkmark p$: least prime, $p > Max[s_n]$
- \Rightarrow A new sequence $T = \{t_n\}$ from S
 - $\checkmark t_n = (s_n, s_{n+1}, \cdots, s_{n+k-1})$
- We regard
 - ✓ s_n as an integer (an element of GF(p)) in GF(p)✓ t_n as a *p*-ary *k*-tuple (an element of $GF(p^k)$) in $GF(p^k)$

Lemma 1 The LFSR generating a sequence $S = \{s_n\}$ of non-negative integers over GF(p), where p is the least prime that satisfies $p > Max[s_n]$, also generates $T = \{t_n\}$, where $t_n = (s_n, s_{n+1}, \dots, s_{n+k-1})$, over $GF(p^k)$.

 $T = \{0011\ 0111\ 1110\ 1102\ 1021\ 0211\ 2112\ 1121\ 1210\ 2101\ \cdots \}$

Fig. 3. The LFSR generating S and T of Example 5.

- From Lemma 1, the shortest LFSR generating S over GF(p) also generates T over GF(p^k)
- It is not always the shortest LFSR generating T over $GF(p^k)$
- Furthermore, the linear complexity of *T* over $GF(p^k)$ cannot be uniquely determined unless a generator polynomial of $GF(p^k)$ is fixed

Example 6) The period of S is 63 and p=2.

 $\Rightarrow LC \text{ of } S \text{ over } GF(2) = 62,$ But, LC of T(k=3) over $GF(2^3) = 60$ regardless of a generator polynomial

 $\Rightarrow \text{LC of } T (k=3) \text{ over } GF(2^3) = 55 \text{ with a generator polynomial, } x^3 + x + 1$ But, LC of $T (k=3) \text{ over } GF(2^3) = 53 \text{ with a generator polynomial, } x^3 + x^2 + 1$

Fact 1 The characteristic polynomial of $G = \{g_n\}$ over GF(q) divides any connection polynomial of the LFSR generating G over GF(q).

Fact 2 The characteristic polynomial of $G = \{g_n\}$ over GF(q) is uniquely determined up to a multiplication by a constant.

Theorem 1 The shortest LFSR generating a binary sequence $S = \{s_n\}$ of integer 0 and 1 with period 2^r over GF(2) is also the shortest LFSR generating a binary k-tuple sequence $T = \{t_n\}$, where $t_n = (s_n, s_{n+1}, \dots, s_{n+k-1})$, over $GF(2^k)$.

Theorem 2 Let $S = \{s_n\}$ be a binary sequence of integer 0 and 1 with period 2^r . Then, The linear complexity of a binary k-tuple sequence $T = \{t_n\}$, where $t_n = (s_n, s_{n+1}, \dots, s_{n+k-1})$, over $GF(2^k)$ is uniquely determined regardless of a choice of a generator polynomial of $GF(2^k)$.

Coding and Information Theory Lab.

ii) Binary 4-tuple sequence $T = \{0000\ 0001\ 0010\ 0101\ 1011\ 0111\ 11111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\$

Fig. 4. The shortest LFSR generating S and T of Example 7.

Coding and Information Theory Lab.

- 17/20 -

- Theorem 1 and Theorem 2 is true when $GF(2^k)$ is $GF(2^m)$, where m > k
- ✓ The shortest LFSR generating a binary sequence $S = \{s_n\}$ of integer 0 and 1 with period 2^{*r*} over *GF*(2) is also the shortest LFSR generating a binary *k*-tuple sequence $T = \{t_n\}$ over *GF*(2^{*m*}), where $t_n = (s_n, s_{n+1}, \dots, s_{n+k-1})$ and $m \ge k$
- ✓ LC of *T* over $GF(2^m)$ is uniquely determined regardless of a choice of a generator polynomial

- ✓ LC of a sequence should be evaluated, after the following three choices are decided
 - 1) Set of the symbols of a sequence
 - 2) Mapping method from a symbol to an element of the set
 - 3) When the set is an extension field, Generator polynomial of the field
- ✓ The shortest LFSR generating a binary sequence $S = \{s_n\}$ of integer 0 and 1 with period 2^{*r*} over *GF*(2) is also the shortest LFSR generating a binary *k*-tuple sequence $T = \{t_n\}$ over *GF*(2^{*m*}), where $t_n = (s_n, s_{n+1}, \dots, s_{n+k-1})$ and $m \ge k$
- ✓ LC of *T* over $GF(2^m)$ is uniquely determined regardless of a choice of a generator polynomial

- [1] J. L. Massey, "Shift-Register Synthesis and BCH decoding," IEEE Trans. Inform. Theory, IT-15, pp. 122-127, Jan. 1969.
- [2] J. A. Reed, N. J. A. Sloane, "Shift Register Synthesis (modulo m)," Siam J. Comp., vol. 14, no. 3, pp. 505-513, Aug. 1985.
- [3] S. W. Golomb, "Shift Register Sequences," Revised Edition, Aegean Park Press, 1982.
- [4] A. H. Chan, R. A. Games, and E. L. Key, "On the Complexity of de Bruijn Sequences,"
 - J. Comb. Theory, Ser. A, vol. 33, pp. 233-246, Nov. 1972.