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Introduction

Sets of sequences in communication and cryptography

Random characteristic

Low correlation: Distinguishable from shifted version of itself and 
others

Balanced, run, span property, etc.

Ease of implementation

Linear Feedback Shift Register (LFSR) sequence

Security

Large Complexity, Long Period

Candidates: PN-sequences

Binary sequences with ideal autocorrelation
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Ideal Autocorrelation

Two-level autocorrelation
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Out-of-phase autocorrelation as low as possible in absolute value

r = 0 : T=4u2, for u≠1, no such sequences (circulant Hadamard conjecture )

r = -1 : called have an ideal autocorrelation property
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Hadamard Sequence

Definition

Balanced periodic binary sequence with ideal autocorrelation (two-level 
autocorrelation with all out-of-phase correlation value -1)

Properties

Length must be 4t-1 for some positive integer t.

Balanced: | (# of 1’s) − (# of 0’s) |= 1

Existence (Not Completely Known)

1. N=4t-1 is a prime

2. N=p(p+2) is a product of “twin primes”

3. N=2n -1 for n=2, 3, 4, ...

Conjecture: These are all (verified up to 10,000 except 13 cases)

Special interest: case 3

How many (truly distinct) kind?, What construction?, etc.
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Equivalence of Hadamard Sequences

Si, i=0, …,N-1 : periodic binary sequence of length N

Cyclic Shifts: Ui = Si+d is a (cyclic) d-shifts of S

Decimation: Ri = Sti with gcd(t, N)=1 is a t-decimation of S

If for two same length sequence Ai and Bi, there exist t and d such 
that Ai=Bti+d for all i, then A and B are equivalent.

D={d1, d2,…, dk}: (v,k,λ)-cyclic difference set

If tD = {td1, td2, �, tdk} = d+D ={d+d1, d+d2, …, d+dk} (as a set) 
for some t and d with (t,v)=1, then  t is called a multiplier of D.
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Equivalence: Example

Equivalence classes of Hadamard Sequences of Length 7

1111000
1110001
1100011
1000111
0001111
0011110
0111100

A
1101010
1010101
0101011
1010110
0101101
1011010
0110101

B
1101100
1011001
0110011
1100110
1001101
0011011
0110110

C
1110100
1101001
1010011
0100111
1001110
0011101
0111010

D
1011100
0111001
1110010
1100101
1001011
0010111
0101110

E

1111000
1110001
1100011
1000111
0001111
0011110
0111100

A
1101010
1010101
0101011
1010110
0101101
1011010
0110101

B

1101100
1011001
0110011
1100110
1001101
0011011
0110110

C

1110100
1101001
1010011
0100111
1001110
0011101
0111010

D
1011100
0111001
1110010
1100101
1001011
0010111
0101110

E
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Exhaustive Search          (1)

# of (binary sequences of length 211-1 =2047) = 22047

# of (balanced binary sequences of length 2047) ≈ 22045

Reduction by cyclic shifts: 22045 /211 = 22034

How to reduce candidates by decimation?

Question: Is a decimated version of Hadamard sequence also Hadamard 
sequence?

Answer: Yes, due to the following.

20452
1023
2047

≅








Theorem

Any (2n-1, 2n-1-1, 2n-2-1)-CHDS D has always 2 as a multiplier.

Moreover, there is unique d such that for D’=D+d, 2D’=D. Then the 
characteristic sequence of D� have the constant-on-the-coset� property.
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Exhaustive Search          (2)

Only to check sequences with constant-on-the-coset property: Si = S2i, 
for all i=0, …, N-1

#(cyclotomic cosets modular 2047) = 187

2187 candidates: still impossible!!

Then for what else?

Theorem (Baumert)

If a (v, k, λ)-CDS exists, then for every divisor w of v, there exists 
integers bi (i=0,…,w-1) satisfying the following three equations.
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Procedure for Exhaustive Search

1. Docompose cyclotomic cosets mod 2n-1.

2. Establish & solve diophantine equations.

3. Exclude redundant solutions using decimation property.

4. Construct sequences from the solutions found. Use 
decimation property once again.

5. Check ideal autocorrelation.
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Coset Decomposition
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Diophantine Equations and Decimation

2047 = 23∙89.

w=23: 4 solutions ⇒ only 2 solutions to be examined

w=89: 88 solutions ⇒ only 11 solutions (not redundant)

For one solution set (a0, a1, …, a26),

Such solutions are more than 8∙1010

Total (at least) 1030 candidates took more than five hundred years in 
pentium 2.4Ghz CPU.
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Known Hadamard Sequences (length 2047)

)()( ∑= teiTrts α

1, 5, 13, 17, 29, 37, 49, 61, 69, 81, 93, 101, 
113, 125, 139, 147, 151, 171, 173, 183

Glynn type II hyperoval

1, 5, 9, 13, 19, 37, 43, 67, 69, 137, 163, 211, 
293

Glynn type I hyperoval

5, 25, 105, 309, 469, 83, 39, 29, 3, 19, 73, 
33, 9, 17, 149

Segre hyperoval sequence

3, 5, 17, 73, 1415-term sequence

1, 33, 493-term sequence

1m-sequence

Trace RepresentationSequence
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Linear Complexity

Linear complexity of Hadamard sequences of length 2047 
from monomial hyperoval in projective plane

23114316511Linear Span

HG2HG1HSm
Sequence 

Type
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(4095, 2047, 1023)-case           (1)

Divisor structure of 4095

1

9 75 13

59 ⋅ 79 ⋅ 139 ⋅ 75 ⋅ 135 ⋅ 137 ⋅

759 ⋅⋅ 1359 ⋅⋅ 1379 ⋅⋅ 1375 ⋅⋅

13759 ⋅⋅⋅
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(4097, 2045, 1023)-case           (2)

Decomposition of cyclotomic
cosets mod 4095
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(4097, 2045, 1023)-case             (3)

Cyclotomic cosets mod 4095: total 351 cosets

34052211# of cosets

1264321coset size

Classes of cyclotomic cosets mod 4095: 36 classes

5

6

1

4

4

3

5

2

2322111# of such classes

7224181281# of cosets in class

For only one solution set (a0, a1, �, a36), approximately

number of choices of choosing candidates, which is greater than total 
number of possibilities for 211-1 case

2322245

876654321

7225191397543
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Summary

Exhaustive search for (2047, 1023, 511)-CHDS

Since 2047 is a product of only two divisors (23 and 89), and 11 is a 
prime, 

Previous search methodology does NOT work efficiently.

Partial Search

No more inequivalent Hadamard sequence of length 2047 was found.

Exhaustive Search for (4095, 2047, 1023)-CHDS

Actually, the final case of the current exhaustive method may work.

Still trying
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