

On the Crosscorrelation of Polyphase Power Residue Sequences

Young-Joon Kim yj.kim @coding.yonsei.ac.kr

November, 22, 2003

Coding & Information Theory Lab. Department of Electrical and Electronic Engineering, Yonsei Univ.

I. Introduction

II. Theory of Polyphase Power Residue Sequences

- 1. Binary Legendre Sequences
- 2. Polyphase Power Residue Sequences

III. Crosscorrelation of PPRS

IV. Concluding Remark

Motivation

- Sequences used in the spread spectrum communication
 need a good auto & cross-correlation
- ✓ Kasami and Gold generated bianry sequence families with good crosscorrelation using m-sequences.
- Polyphase Power Residue Sequences(shortly PPRS) have good autocorrelation
- ✓ Legendre sequences(special cases of PPRS with q=2)
 - generation, existence condition, linear complexity(LC), trace representation have been determined and most of them are solved, but as of PPRS only autocorrelation and LC have been determined.

Binary Legendre Sequences of length *p* 1. Let *p* be an odd prime.

$$\{a_n\} = \begin{cases} 1 & , & \text{if } n \equiv 0 \mod p \\ 0 & , & \text{if } n \text{ is a quadratic residue mod } p \\ 1 & , & otherwise \end{cases}$$

 \checkmark Example 2.1 p=11, QR={1, 3, 4, 5, 9}, QNR={2, 6, 7, 8, 10} $a_{n} = \{a_{0}a_{1}a_{2}a_{3}a_{4}a_{5}a_{6}a_{7}a_{8}a_{9}a_{10}\}$ 0 2 3 4 5 6 7 8 1 τ 11 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 $C(\tau)$ $= \{1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1 \}$

9

10

✓ Example 2.2 p=13, QR={1, 3, 4, 9, 10, 12}, QNR={2, 5, 6, 7, 8, 11} $a_n = \{a_0a_1a_2a_3a_4a_5a_6a_7a_8a_9a_{10}a_{11}a_{12}\}$

au	0	1	2	3	4	5	6	7	8	9	10	11	12
$C(\tau)$	13	1	-3	1	1	-3	-3	-3	-3	1	1	-3	1

- 2. Polyphase Power Residue Sequences
- Preparation(1) partitioning of nonzero integer mod p

p: odd prime

q : any divisor of p-1 $T : \frac{p-1}{q}$ Hence $p-1 = q \cdot T$ (If T is even, then $p \equiv 1 \pmod{2q}$) If T is odd, then $p \equiv q+1 \pmod{2q}$) μ : primitive element in mod p

- Preparation(2) partitioning of nonzero integer mod p
 - $C_0 = \{ \text{set of } q \text{-th power residues} \}$ $= \{\mu^{0}, \mu^{q}, \mu^{2q}, \dots, \mu^{(T-1)q}\}$ $C_1 \equiv \mu^1 \cdot C_0$ $= \{\mu^{1}, \mu^{q+1}, \mu^{2q+1}, \dots, \mu^{(T-1)q+1}\}$ $C_{q-1} = \mu^{q-1} \cdot C_0$ = { $\mu^{q-1}, \mu^{2q-1}, \mu^{3q-1}, \dots, \mu^{Tq-1}$ }

Constuction of q-phase Power Residue Sequences of length p

Where n = 0, 1, ..., p-1

✓ Example 2.3 p = 13, q = 3, $\mu = 2$

i	0	1	2	3	4	5	6	7	8	9	10	11
$2^i \pmod{13}$	1	2	4	8	3	6	12	11	9	5	10	7

i	1	2	3	4	5	6	7	8	9	10	11	12
<i>i</i> ³ (mod 13)	1	8	1	12	8	8	5	5	1	12	5	12

 $C_0 = \{1, 5, 8, 12\}$

 $C_1 = \mu^1 \cdot C_0 = 2 \cdot C_0 = 2 \cdot \{1, 5, 8, 12\} = \{2, 10, 3, 11\}$

 $C_2 = \mu^2 \cdot C_0 = 2^2 \cdot C_0 = 4 \cdot \{1, 5, 8, 12\} = \{4, 7, 6, 9\}$

Hence, 3-phase PRS of length 13 is as follows. $\{a_{13}\} = (a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11}, a_{12})$ $= (1, 1, e^{j\frac{2\pi \cdot 1}{3}}, e^{j\frac{2\pi \cdot 1}{3}}, e^{j\frac{2\pi \cdot 2}{3}}, 1, e^{j\frac{2\pi \cdot 2}{3}}, e^{j\frac{2\pi \cdot 2}{3}}, e^{j\frac{2\pi \cdot 2}{3}}, e^{j\frac{2\pi \cdot 1}{3}}, e^{j\frac{2\pi \cdot 1}{3}}, 1)$

Coding and Information Theory Lab.

✓ Properties of q-phase PRS

1.
$$a_u \cdot a_v = a_{u \cdot v}$$
, $a_u \cdot a_v^* = a_{u/v}$ $(u \neq 0, v \neq 0)$

2. $a_1 = 1$ and

$$a_{-1} = \begin{cases} -1 & , \quad p \equiv q+1 \ (2q) \\ 1 & , \quad p \equiv 1 \ (2q) \end{cases} \qquad a_{-u} = \begin{cases} -a_u & , \quad p \equiv q+1 \ (2q) \\ a_u & , \quad p \equiv 1 \ (2q) \end{cases}$$

3.
$$\sum_{x=1}^{p-1} a_x = 0$$

4. If $a_u = \alpha_u + j \cdot \beta_u$ $(\alpha_u, \beta_u \in R)$

$$R_{a}(\tau) = \sum_{x=0}^{p-1} a_{x} a_{x+\tau}^{*} = \begin{cases} -1 - j \cdot 2\beta_{\tau}, & p \equiv q+1 \mod 2q \\ -1 + 2 \cdot \alpha_{\tau}, & p \equiv 1 \mod 2q \end{cases} \implies |R_{a}(\tau)| \le 3$$

- ✓ In fact, there are $\varphi(p-1)$ primtive elements in mod *p*.
- \checkmark Example 3.1

When p = 13, $\mathcal{O}(12)=4$ primitive elements (mod 13) (ex. $\mu = 2,6,11,7$) p = 13, q = 3, $\mu = 6$

i	0	1	2	3	4	5	6	7	8	9	10	11
6 ⁱ (mod 13)	1	6	10	8	9	2	12	7	3	5	4	11
i	1	2	3	4	5	6	7	8	9	10	11	12
i ³ (mod 13)	1	8	1	12	8	8	5	5	1	12	5	12

$$\begin{aligned} \{a_{13}\} &= (a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11}, a_{12}) \\ &= (1, 1, e^{j\frac{2\pi\cdot 2}{3}}, e^{j\frac{2\pi\cdot 2}{3}}, e^{j\frac{2\pi\cdot 1}{3}}, 1, e^{j\frac{2\pi\cdot 1}{3}}, e^{j\frac{2\pi\cdot 1}{3}}, 1, e^{j\frac{2\pi\cdot 1}{3}}, 1, e^{j\frac{2\pi\cdot 2}{3}}, e^{j\frac{2\pi\cdot 2}{3}}, e^{j\frac{2\pi\cdot 2}{3}}, 1) \end{aligned}$$

✓ Table1. set of primtives which result in same PPRS, set of PPRS for given p and q

р	μ	q	Primitive set	$W_{_{pq}}$
11	2	5	1	00132442310
			3	0 0 2 1 4 3 3 4 1 2 0
			7	0 0 3 4 1 2 2 1 4 3 0
			9	0 0 4 2 3 1 1 3 2 4 0
13	2	3	(1, 7)	0 0 1 1 2 0 2 2 0 2 1 1 0
			(5, 11)	0 0 2 2 1 0 1 1 0 1 2 2 0
		4	(1, 5)	0 0 1 0 2 1 1 3 3 0 2 3 2
			(7, 11)	0 0 3 0 2 3 3 1 1 0 2 1 2
		6	(1, 7)	0 0 1 4 2 3 5 5 3 2 4 1 0
			(5, 11)	0 0 5 2 4 3 1 1 3 4 2 5 0

⇒ We represents PPRS W_{pq} for super index of exponential instead of complex *q*-th roots of unity.

Coding and Information Theory Lab.

Crosscorrelation function between distinct two PPRS is as follows.

$$C_{a,b}(\tau) = \sum_{n=0}^{p-1} a_n b_{n+\tau}^*$$

= $\sum_{n=0}^{p-1} \omega^{s_1(n) - s_2(n+\tau)}$ (*)

✓ Where ω is a complex primitive *q*-th root of unity,

$$a_n = \omega^{s_1(n)}$$
 $b_n = \omega^{s_2(n)}$

✓ Sequences $s_1(n)$ and $s_2(n)$ takes on values in Z_q

Table 2. Maximum crosscorrelation between distinct two PRS, number of larger than p/3 and \sqrt{p}

	-		1	14	1	10	T	_
p	μ	q	(i, j)	Max	Larger	p/3	Larger	\sqrt{p}
11	2	5	(1,3)	5.213	4	3.667	4	3.317
			(1,7)	4.765	4		6	
			(1,9)	5.213	6	1	6	
			(3,7)	5.314	6	1	6	
			(3,9)	4.765	4		6	
	s		(7,9)	5.213	4		4	
13	2	3	(1,5)	5.568	4	4.333	4	3.606
		4	(1,7)	3.606	0		0	Ì
	8	6	(1,5)	5.568	6		6	
17	3	4	(1,3)	6.083	4	5.667	8	4.123
	8	8	(1,3)	6.083	2		4	İ. I
			(1,5)	5.745	2	1	6	İ.
			(1,7)	6.123	6		10	Í
			(3,5)	6.123	6		10	† I
			(3,7)	5.745	2		6	
			(5,7)	6.083	2		4	İ
19	2	3	(1,5)	6.083	0	6.333	12	4.359
		6	(1,5)	4.359	0		0	Í I
		9	(1,5)	5.752	0		12	
			(1,7)	5.392	0		12	
			(1,11)	6.34	2		8	
			(1,13)	6.282	0		6	
			:		:			

Coding and Information Theory Lab.

- 14/ 16 -

Nov. 22. 2003

					1		
	p	μ	q	distinct	$MaxC_W$	Larger	$\sqrt{p}+2$
	11	2	5	4	5.314	0	5.317
	13	2	3	2	5.568	0	5.606
			4	2	3.606	0	-
			6	2	5.568	0	
	17	3	4	2	6.083	0	6.123
			8	4	6.123	0	-
	19	2	3	2	6.083	0	6.359
			6	2	4.359	0	
			9	6	6.34	0	
	23	5	11	10	6.796	0	6.796
	29	2	4	2	5.385	0	7.385
			7	6	7.364	0	
			14	6	7.38	0	
$h(\alpha)$	31	3	3	2	7	0	7.568
$\mathcal{P}(q)$			5	4	7.562	0	
			6	2	5.568	0	
			10	4	7.434	0	
			15	8	7.568	0	
	37	2	3	2	7.81	0	8.083
		_					

Coding and Information Theory Lab.

- 15/ 16 -

Nov. 22. 2003

- ✓ Generation of PPRS by changing primitive elements For fixed *p* and *q*, there exist $\phi(q)$ distinct PPRS
- ✓ Investigate the crosscorrelation of distinct PPRS having phase q for $11 \le p \le 521$.
- ✓ Conjecture

Independent of p and q, maximum crosscorrelation of PPRS made by changing primtive element is upper bounded to $\sqrt{p} + 2$ i.e. $\max |C_{a,b}(\tau)| \le \sqrt{p} + 2$