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I. Introduction

Motivation

Sequences used in the spread spectrum communication 
- need a good auto & cross-correlation 
Kasami and Gold generated bianry sequence families with good 
crosscorrelation using m-sequences.
Polyphase Power Residue Sequences(shortly PPRS) have good 
autocorrelation
Legendre sequences(special cases of PPRS with q=2)
- generation, existence condition, linear complexity(LC), trace 
representation have been determined and most of them are solved, but 
as of PPRS only autocorrelation and LC have been determined.
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II. Theory of PPRS(1)

1. Binary Legendre Sequences of length p
Let p be an odd prime. 

Example 2.1
p=11,  QR={1, 3, 4, 5, 9},  QNR={2, 6, 7, 8, 10}   
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II. Theory of PPRS(2)

Example 2.2
p=13,  QR={1, 3, 4, 9, 10, 12},  QNR={2, 5, 6, 7, 8, 11}   
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II. Theory of PPRS(3)

2. Polyphase Power Residue Sequences

Preparation(1) – partitioning of nonzero integer mod p

p :  odd prime

q :  any divisor of  p-1

T  :

Hence p-1 = q·T       

(If  T is even, then                       

If  T is odd,  then                                   )

μ :  primitive element in mod p

q
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II. Theory of PPRS(4)

Preparation(2) – partitioning of nonzero integer mod p

= {set of q-th power residues}
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II. Theory of PPRS(5)

Constuction of q-phase  Power Residue Sequences of length p

Where  n= 0,1,…, p-1
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II. Theory of PPRS(6)

Example 2.3   p = 13 , q = 3, μ=2

Hence, 3-phase PRS of length 13 is as follows.
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II. Theory of PPRS(7)

Properties of q-phase PRS
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III. Crosscorrelation of PPRS (1)

In fact, there are Φ(p-1) primtive elements in mod p.
Example 3.1   

When  p = 13, Φ(12)=4 primitive elements (mod 13)  (ex. μ= 2,6,11,7)

p = 13 , q = 3, μ=6
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III. Crosscorrelation of PPRS (2)

Table1. set of primtives which result in same PPRS, set of PPRS
for given p and q

⇒ We represents PPRS Wpq for super index of exponential 
instead of complex q-th roots of unity.

pqWp q Primitive set

11 2 5 1

3

7

9

0 0 1 3 2 4 4 2 3 1 0

0 0 2 1 4 3 3 4 1 2 0

0 0 3 4 1 2 2 1 4 3 0

0 0 4 2 3 1 1 3 2 4 0

13 2 3 (1, 7)

(5, 11)

0 0 1 1 2 0 2 2 0 2 1 1 0

0 0 2 2 1 0 1 1 0 1 2 2 0

4 (1, 5)

(7, 11)

0 0 1 0 2 1 1 3 3 0 2 3 2

0 0 3 0 2 3 3 1 1 0 2 1 2

6 (1, 7)

(5, 11)

0 0 1 4 2 3 5 5 3 2 4 1 0

0 0 5 2 4 3 1 1 3 4 2 5 0

μ
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III. Crosscorrelation of PPRS (3)

Crosscorrelation function between distinct two PPRS is as follows.

Where ω is a complex primitive q-th root of unity,                
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Table 2. Maximum   crosscorrelation between distinct two PRS,  
number of larger than   p/3 and p
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Table 3. Number of distinct PPRS, Maximum of maximum  
crosscorrelation MaxCw,  number of larger than                2+p

 )( qφ
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IV. Concluding Remark

Generation of PPRS by changing primitive elements
For fixed p and q, there exist φ(q) distinct PPRS

Investigate  the crosscorrelation of distinct  PPRS having phase q   
for 11≤p≤ 521. 

Conjecture

Independent of p and q, maximum crosscorrelation of PPRS   
made by changing primtive element is  upper bounded to                

i.e.        2    |)(|max , +≤ pC ba τ
2 +p


