코스타스 어레이: 최적상관함수를 갖는 2차원 신호

송홍엽 연세대학교 전자공학과

Costas Arrays : Two-dimensional Pulse Patterns with Optimum Correlation

Song, Hong-Yeop Dept. of Electronic Engineering, Yonsei University

요약

2차원 펄스 패턴에 대한 배경과 수학적 모델, 설계, 생성방법, 그리고 기타의 대수학적 관련 이론을 설명하고, 이와 관련된 여러 가지의 가설을 정리하여 소개하고자한다. 코스타 스 어레이는 그 정의에 의하여 상관특성(autocorrelation)이 최적이라는 성질을 가지므로, 능 동소나시스템 뿐만 아니라 주파수이동(frequency hopping) 대역확산통신 시스템의 주파수천 이시퀀스의 설계에, 그리고 PPM 통신 시스템이나 fiber-optic 통신 시스템의 펄스 위치 시 퀸스 설계 등에 적절히 응용되어 많은 연구결과가 발표되고 있다.

1. 서론

코히어런트 펄스 레이다 시스템 (Coherent Pulsed Radar System) 및 능동 소나 시스템(Active Sonar System)에서는 기본적으로 한 개의 펄스를 송신하여 이것 이 목표(target)로부터 반사되어 돌아오는 수신펄스를 가 지고 정합필터(matched-filter)를 통과시켜서 거리를 측정 그러므로 한다.[18] [5] [6] 펄스의 자기상관함수 (Autocorrelation Function) 특성이 시스템의 성능을 결정 하는 가장 중요한 요소가 된다. 일반적으로 폭이 7 인 사각형(rectangular) 펄스는 밑변의 길이가 27 인 삼각형 (triangular) 모양의 자기상관함수를 갖는다. 결국 이러한 시스템이 최대의 해상도(Resolution)를 얻기 위해서는 수 신 펄스와 정합 시키는 펄스와의 시간차 τ가 0일 때를 제외한 모든 7값에 대해서 거의 0에 가까운 값을 상관 값으로 가져야 할 것이다. 이를 위하여 제안된 여러 가지 방법들은 기본적으로 한 개의 펄스대신에 여러 개의 작은 펄스를 적당한 시간간격으로 송신하는 것인데 이때 여러 개의 펄스의 에너지의 합이 한 개의 펄스에너지와 같다는 조건을 만족시켜야 함은 물론이다. 이는, 만일 더 많은 에 너지를 사용할 수 있다면 원래의 펄스 한 개에 더 많은 에너지를 실어 사용함이 손쉽게 성능을 향상시키는 방법

이기 때문이다.

결론적으로, 한 개의 펄스를 여러 개의 펄스로 대치 하는 주된 이유는 한 개의 펄스에, 혹은 한 개의 펄스폭 (Pulse Duration) 시간동안에 더 이상의 에너지를 송신할 수 없는 상황에서도 해상도를 높일 수 있는 방법이기 때 문이다. 이러한 목적을 위하여 설계된 레이다 신호를 펄 스압축신호(Pulse Compression Signal)라 한다.[10]

대개의 레이다 및 소나 시스템은 목표(Target)와의 상대적인 속도를 갖는 것이 보통이다. 이런 경우, 목표물 의 상대속도는 Doppler에 의해서 검출할 수 있다. 이를 위 해서는 2차원의 펄스패턴이 필요하게 되는데, 이에 대하여 알아보자.[5][6][16][17]

(그림1)에 보인 것과 같이 크기가 6×6인 2차원 어레 이(Array)를 생각하자. 각각의 행(Row)에는 첨"이 꼭 한 개씩 있으며, 각각의 열(Column)에도 점"이 꼭 한 개씩 있다. 첨"이 없는 위치는 빈칸"이라고 하자. 이러한 2차 원 패턴은 거리와 상대속도 측정을 위하여 펄스 레이다 시스템 및 능동 소나 시스템에서 흔히 사용되는 2차원 신 호(펄스패턴)의 수학적 모델이다.

이를 사용하는 시스템은 x축을 시간 t_1, t_2, \ldots, t_6 ,

그리고 y 축을 주파수 f_1, f_2, \ldots, f_6 라 두고, 위치 (t_i, f_j) 에 첨"이 있으면 시간 t_i 에 주파수 f_j 로 변조 된 펄스를 송신한다. 이러한 신호의 자기상관함수 $\Theta(\tau, \phi)$ 는 시간축 이동 τ 와 주파수축 이동 ϕ 를 변수로 갖는 2차원 함수로서, 1차원 신호의 그것과 마찬가지로 다 음과 같이 정의할 수 있다. 즉, 2차원 펄스패턴 위에 같 은 펄스패턴을 겹쳐 놓고서, 위에 있는 패턴을 시간축 방 향으로 τ 만큼, 주파수 축 방향으로 ϕ 만큼 이동시킨 후 두 패턴 사이에 겹쳐진 "점"의 수를 모두 세어 그 수를 $\Theta(\tau, \phi)$ 의 값으로 한다.

(그림1)에 보인 2차원 신호의 자기상관함수값
θ(τ = 3, φ = 1)을 계산하는 방법을 (그림2)에 보인다.
여기에서는 같은 패턴을, 아래쪽에는 첨"으로, 위쪽에는 원"으로 표시하였다. (τ, φ) = (3, 1)일 때, 겹치는 첨"
의 수가 1임에 유의하라. 그리고 - 5≤τ≤5와 - 5≤φ≤5인 모든 경우에 대한 자기상관함수의 값
θ(τ, φ)를 (그림3)에 나타내었다. 여기에서 값이 0인 곳
은 생략하였다. 이 함수는 (τ, φ) = (0, 0)에서만 최대
값 6을 가지며 그렇지 않은 모든 (τ, φ)에 대해서 그 값
이 0 혹은 1임을 쉽게 알 수 있다. 1차원 신호와 마찬가
지로 이 결과는 6개의 펄스를 사용하는 시스템에 최고의
해상도를 가져다주며, 이러한 2차원 신호(펄스패턴)를
6×6 코스타스 어레이(Costas Array) 혹은 6차 코스타스
어레이라고 하다.

그림 2. Calculation of the autocorrelation value $\Theta(\tau = 3, \Phi = 1) = 1$ for the signal shown in Figure 1.

그림 3. Autocorrelation fuction of the Costas array of order 6 in Figure 1.

2. 본론

정의 (1) n을 임의의 양의 정수(positive integer)라 하자. n×n 코스타스어레이 혹은 n차 코스타스어레이는 n개 의 첨"과 n² - n개의 빈칸"으로 구성된 n×n 행렬로서 각각의 행과 각각의 열에는 첨"이 꼭 한 개씩 존재하고, n개의 첨"을 (n² - n)/2 개의 가상의 선분들로 모두 연결하였을 때 길이(length)와 기울기(slope)가 동시에 같 은 두 선분은 존재하지 않는다. [16]

위의 정의(1)에 표현된 길이와 기울기가 모두 같은 두 선분의 존재는 평행사변형이 존재함을 의미하는데, 이 것의 네 꼭지점에 위치한 점"은 이 신호의 자기상관함수 값을 적어도 2 혹은 그 이상이 되게 함을 의미한다. 즉, 그러한 두 선분이 존재하지 않는다면 그 신호의 자기상관 함수값이 (τ, φ)= (0, 0)을 제외하곤 반드시 1 혹은 0임 을 의미한다. (그림4)에 *n* = 1, 2, 3, 4, 5일 때의 *n×n* 코스타스 어레이의 예를 각각 들었다. (그림5)에는 최근 에 발견된 53차 코스타스 어레이를 보인다.

1980년대 초, J. P. Costas에 의해 능동 소나 시스템 에 응용을 위하여 처음 그 수학적 모델이 제안된 이래 [5][6][16][17], 많은 연구결과가 이어져 오고 있으면서도, 가장 핵심적인 미해결 문제(Open Problem)는 모든 자연수 n에 대하여 $n \times n$ 코스타스 어레이가 과연 존재하는가 하는 질문이다. 이에 대한 해결의 시도로서 특정성질을 갖 는 무한히 많은 n에 대한 $n \times n$ 코스타스어레이를 만드 는 여러 가지 방법(Construction)이 증명되었는데 그 중에 한가지는 L. Welch에 의한 다음의 방법이며, 이를 이용한 10차 코스타스 어레이를 (그림6)에 보인다. 여기에서 코너 위치에 있는 점"과 그 점을 포함하는행과 열을 모두 지 우면 그 결과는 9차 코스타스어레이가 된다.

Welch 생성방법[14][17] : 정수 *n*이 소수(prime)라 하고 a를 *Z_n*의 원시근 (primitive root)이라 하자. *i*= 1, 2, ..., *n*-1에 대하여 (*x*, *y*)= (*i*, *a'*)위치에 첨"을 선택하고 나머지는 빈칸"으로 두면, (*n*-1)×(*n*-1) 코스타스 어레이가 된다.

n×n 코스타스 어레이는 서로 다른 *n*개의 정수 1, 2, 3, ..., *n*에 대한 치환(Permutation)으로 해석할수 있다. 이러한 치환의 수는 *n*! 인데, 이중에서 어떤 치환은 *n×n* 코스타스 어레이와 동치(Equivalent)이며, 어떤 치환 은 *n×n* 코스타스 어레이일 수 없다. 거의 대부분의 치 환이 *n×n* 코스타스 어레이가 아니라는 사실은 주어진 *n*에 대해 몇 번만 시도해 보면 쉽게 짐작할 수 있다. 즉, *n×n* 코스타스 어레이는 서로 다른 *n*개의 정수 1, 2, 3, ..., *n*에 대한 치환 중에 특별한 성질을 가지는 것으로 다음의 정의(2)는 위의 정의(1)과 서로 동치이면서, (존재한다면) 하나의 *n×n* 코스타스 어레이를 찾는 좋은 방법(Construction)을 제시한다.

정의 (2) *n*을 임의의 양의 정수(positive integer)라 하자. 정수 1부터 *n*까지 *n*개의 수를 꼭 한 번씩 사용하며, 길 이가 *n*인 수열 *a*₁, *a*₂,..., *a*_n이 아래의 조건을 만족 하면 *n*차 코스타스 수열 (Costas Sequence)이라 한다.

1≤ <i>i</i> < <i>i</i> + <i>d</i> ≤ <i>n</i> 와 1≤ <i>j</i> < <i>j</i> + <i>d</i> ≤ <i>n</i> 를 만족하는 모든
첨자 <i>i, i+ d, j, j+ d</i> 에 대하여
$i \neq j \Rightarrow a_{i+d} - a_i \neq a_{j+d} - a_j$

만일 *n*차 코스타스 수열 *a*₁, *a*₁, ..., *a*_n 가 주어 진다면 $n \times n$ 어레이에 (x, y)좌표가 (i, a,)로 주어 지는 위치에 첨"을 찍어 n×n 코스타스 어레이를 만들 수 있다. 반대로, n×n 코스타스 어레이가 주어지면, 열 의 순서 (X 좌표) 1, 2, 3, ..., n를 따라 첨"이 위치한 행의 _V 좌표를 읽어서 <u>n</u>차 코스타스 수열 a,, a,,..., a, 을 찾을 수 있다. 물론, 행의 순서 (y 좌표) 1.2.3.... n를 따라 점"이 위치한 열의 X 좌 표를 읽어도 그 결과는 n차 코스타스 수열이다. 이는 행 좌표 a1, a2,..., a 로 만들어진 코스타스 어레이와 Transpose관계에 있다. 많은 대수학적 생성방법이 증명 되었음에도 불구하고, 어떤 n에 대해서는 n×n 코스타스 어레이가 알려져 있지 않으며 그 n에 대해서 존재하지 않는다는 증명도 완성되지 못한 경우도 무한히 많다. 이를 위하여, 양의 정수 n에 대하여 조합론적인 함수 C(n) 을 다음과 같이 정의하자.

정의 (3) 정수 *n*에 대하여 *C*(*n*) 은 서로 다른 *n*차 코스타스 어레이의 개수이다.

처음 이 문제가 대두되었을 때는 C(n) 이 증가함수 라는데 의견이 모아졌었다. 〃×〃 코스타스 어레이는 〃개 의 심볼에 대한 n! 개의 치환(Permutation)중에 일부이며, 기본적으로 함수 n! 은 n이 증가함에 따라 급속히 증가 하므로 상당히 타당성이 있어 보였다. 이는 n 값이 1부 터 16까지 사실이었으나, C(17) < C(16) 임이 처음 Silverman등에 의해 IEEE Proceedings에 1988년 발표된 이후에 비상한 관심을 끌고 있다.[28] 그 이후 Moreno 등에 의해서 꾸준히 더 큰 n에 대한 값이 컴퓨터에 의해 결정되었는데[2][21-25], 더욱 흥미로운 사실은 n값이 16 부터 22까지 C(n) 이 단조감소한다는 사실이다. 공교 롭게도, n= 32 는 알려진 n차 코스타스 어레이가 없 으며, n차코스타스 어레이가 존재하지 않는다는 증명도 없는 경우"의 가장 작은 경우이다. n이 1부터 22까지의 함수 C(n) 의 추세를 가만하여 추측키는, 아무래도 32×32 코스타스 어레이가 존재하지 않는다는 것이 사실

인 듯 하지만, 이는 크기가 32보다 훨씬 큰 무한히 많은 경우의 n에 대한 n×n 코스타스 어레이를 만드는 방법 이 대수학적으로 증명된 이상, 성급히 결론짓기가 어려운 부분이다. 예를 들면, Welch 방법에 의하여 양의 정수 n 이 소수(Prime)보다 1만큼 작은 정수이기만 하면 n×n 코 스타스 어레이를 쉽게 찾을 수 있다.

n= 32인 경우에 대해 생각해 보자. 32×32 코스타 스 어레이가 존재하지 않는다고 가정하고 이를 컴퓨터를 이용하여 확인하려면 얼마나 많은 시간이 소요될는지 알 아보기 위하여 다음과 같은 예측을 할 수 있다. 정수 1부 터 32까지 32개의 정수에 대한 치환(permutation)의 수는 모두 32!≈ 10³² 개이며 컴퓨터를 이용하여도 수년 혹은 수십 년이 소요되리라는 것을 쉽게 알 수 있다. 즉, 한 개의 치환을 택하여 이것이 코스타스 어레이임을 확인하 는데 걸리는 시간을 1 µsec 라 하고, 1초에 약 10⁶개를 확인할 수 있다면, 1032개를 확인하는데 걸리는 시간은 약 1028 초, 이는 약 1020년이 걸린다. 컴퓨터의 속도가 천배 빨라서 1초에 10°개를 처리한다면, 이 시간은 약 10''년으로 줄겠지만, 역시 현실적으로 불가능한 기간이 라고 하겠다. 만일, 반대로, 32×32 코스타스 어레이가 존재하고 위의 방법으로 찾는다면, 얼마나 빨리 이를 찾을 수 있는지는 32! 개의 치환에 순서를 주는 방법에 달려있 음을 알 수 있다. N= 32! 이라 두고 N개의 치환에 순 서를 주는 모든 방법의 수는 다시 № 이므로 이중에서 어 떤 순서대로 찾아야 할런지는 참으로 어려운 문제라고 하 겠다.

그림 7. Singly-periodic Costas array

위에서 언급한 Welch Construction을 다시 생각해보 자. 양의 정수 n이 어떤 소수 D 보다 1만큼 작다고 하 자. 즉, n= p- 1이다. 이때, 소수 p 를 법(modulo)으 로 갖는 정수류의 0이 아닌 p-1개의 수는 순환군 (Cyclic Group)을 이루므로 위치 (*i*, *a'*)에 첨"을 선택할 때 반드시 *i*= 1에서부터 시작할 필요는 없다. 다시 말 해서, Welch Construction에 의한 $n \times n$ 코스타스 어레이 는 어떠한 i 에서부터 시작하여도 가능한 것이다. 이를 코스타스 수열로 설명하면, 원시근 a의 무한 승수열 a, a², a³, a⁴, ... 에서 연속적인 n= p-1 개의 항을 취하면, (예를 들어, a³, a⁴..., aⁿ⁺²) 이는 코스타스 수열이 된다는 점이다. 이러한 성질을 만족하는 코스타스 어레이를 단방향 주기적 코스타스어레이 (Singly-Periodic Costas Array) 라고 한다. (그림7)에 Welch 생성방법에 의 한 예를 보였다. 그러면, Welch에 의한 방법으로 만들 어진 코스타스 어레이 이외에, 또 다른 단방향 주기적 코 스타스 어레이가 있을 것인가? Golomb은 1980년대 중 반에 모든 단방향 주기적 코스타스 어레이는 궁극적으로 Welch Construction에 의해서 만들어진다는 가설을 세웠 지만, 이의 해결은 아직 요원해 보인다. [14][17]

지금까지 알려진 대수학적 생성방법을 정리하자. 여 기에는 앞서 언급한 Welch Construction 이외에 추가로 Lempel Construction과 Golomb Construction이 있으며, 이 세가지 방법으로부터 특정조건을 만족할 때 얻어지는 Variation이 몇가지 더 존재한다.

Lempel 생성방법[14][17] : 정수 q 를 소수의 먹(prime power) 이라하고 a를 유한체 GF(q) 의 원시원소 (primitive element) 라고 하자. x, y= 1, 2, ..., q- 2에 대하여 a^{*} + a^r = 1을 만족하는 (x, y)위치에 첨"을 선 택하고 나머지는 빈칸"으로 두면 (q- 2)×(q- 2) 코스 타스 어레이가 된다.

만일, 원시원소 a가 a+ a= 1을 만족한다면, 이는 위치 (1,1)에 점이 자리잡게되므로, 이 점과 이 점을 포함 하는 열과 행을 지우면 (q-3)차 코스타스 어레이를 얻 게된다. 마찬가지로, (1, q-2)위치나, (q-2, 1)위치, 혹은 (q-2, q-2)위치에 점이 자리할 수 있는데, 이를 제거하면 (q-3)차 코스타스 어레이를 얻을 수 있다. Lempel 방법에의한 11차와 10차의 코스타스 어레이를 (그림8)에 보인다.

Lempel construction

 Golomb 생성방법[14][17]: 정수 q 를 소수의 멱(prime

 power) 이라하고 a와 b 를 유한체 GF(q) 의 원시원

 소 (primitive element) 라고 하자.

 x, y= 1, 2, ..., q- 2에 대하여 a*+ b*= 1을 만족하

 는 (x, y)위치에 첨"을 선택하고 나머지는 빈칸"으로

 두면 (q-2)×(q-2) 코스타스 어레이가 된다.

우선, a와 b가 동일한 경우, 이는 Lempel 방법이되 며, 이러한 관점에서, Golomb 방법은 일종의 일반화된 경 우라 할 수 있다. 만일 유한체 *GF*(*q*) 에 *a*+ *b*= 1 을 만족하는 원시원 *a*와 *b*가 존재한다면, 이는 (*q*- 3)×(*q*- 3) 코스타스 어레이로 항상 줄일 수 있으 며, 모든 유한체 *GF*(*q*) 에 *a*+ *b*= 1 을 만족하는 원 시원 *a*와 *b*의 존재성은 최근에 증명되었다. 여기에 더하 여, *a*² + *b*² = 1 까지 만족한다면, (*q*- 4)×(*q*- 4) 코 스타스 어레이로 줄일 수 있다. 이상의 몇가지 추가적인 조건을 만족하면 어레이의 차수를 줄일 수 있는데 이를 (그림9에 보인다.[15]

명칭	충분조건	차수 (n)
L3	$a^{-1} + a^{-1} = 1$ (or, a=2)	q-3
T4	$a^2 + a = 1$	q-4
G3	a + b = 1	q-3
G4	$a + b = 1$ and $a^2 + b^2 = 1$	q-4
G4*	$a + b = 1$ and $a^2 + b^{-1} = 1$	q-4
G5 [*]	and necessarily $a^{-1} + b^2 = 1$	q-5

그림 9. Variations of Golomb construction

3. 결론 및 Open Problems

위에서 우리는 최적의 2차원 자기상관함수를 가지는 펄스 패턴의 수학적 구조와 생성법을 정리하고 존재성과 관련 된 다양한 가설에 대하여 알아보았다. 아래에 이를 좀더 구체적으로 나열한다.

① 32×32 코스타스 어레이는 존재하는가? [17]

② 모든 양의 정수 n에 대하여 n차 코스타스 어레이는 존 재하는가 ? ── 1부터 359까지 모든 정수 n에 대하여, n 차 코스타스 어레이는 다음을 제외하고 존재함이 알려져 있다. { 32, 33, 43, 48, 49, 54, 63, 73, 74, 83, 84, 85, 89-93, 97, 103, 109, 113-117, 120, 121, 131-133, 139-143, 151-153, 157-159, 163, 168, 169, 173, 174, 181-186, 193, 199-207, 211-219, 223, 229, 233, 234, 242-246, 251, 257-259, 263, 271-273, 277, 283-285, 288, 289, 293-303, 313, 317-327, 331-333, 337, 339, 342, 343, 349, 353, 354 } [17][35]

③ 조합론적인 함수 *C*(*n*) 의 값과 그 특성은 ? ─ 현 재까지 1≤*n*≤ 23 범위에서 이 값이 완전히 알려져있고, 24≤ *n*≤ 31 범위에서 적어도 1 보다 크다고 알려져 있다. 이를 아래에 (그림10)에 보인다. 여기에서, *c*(*n*) 은 n차 의 dihedral group 대칭을 고려해도 서로다른 코스타스 어 레이의 개수이며, *s*(*n*) 은 대각선을 중심으로 서로 대칭 이면서 동시에 dihedral group의 대칭을 고려해도 서로다 른 코스타스 어레이의 개수이다. [2]

④ 모든 단방향 주기적 코스타스 어레이는 그 차수가 반드시 소수(prime)보다 1만큼 작아야 하는가 ? --- 모든 단방향 주기적 코스타스 어레이의 차수 n은 짝수임이 중 명되었다. 과연 n+1이 소수(prime)이어야 하는가는 아직 증명되지 않았다. n+1이 소수가 아닌 홀수 9, 15, 21 인 경우 존재하지 않음이 밝혀졌다.[17][2]

⑤ 모든 단방향 주기적 코스타스 어레이는 궁극적으로 Welch 방법으로 생성가능한가 ? --- 약간의 연구가 이루 어졌으나 아직은 요원해 보인다. 23이하의 모든 소수 (prime)에 대해 궁극적으로 Welch 방법밖에 없음이 밝혀 졌다.[14][17][20]

※ 본 논문은 96년도 연세대학교 학술연구비 지원에 의한 연구 결과임

참고문헌

- A. Blokhuis and H. J. Tiersma, "Bounds for the size of radar arrays," *IEEE Transactions on Information Theory*, vol. IT-34, no., 1, pp. 164–167, Jan. 1988
- [2] C. Brown, M. Cenkle, R. Games, J. Rushanan, O. Moreno, and P. Pei, "New enumeration results for Costas arrays," *Proceedings of the IEEE International Symposium on Information theory*, page 405, 1993.
- [3] Weita Chang, A remark on the definition of Costas Arrays,'' *Proceedings of the IEEE*, vol. 75, no. 4, pp. 522–523, April 1987.
- [4] W. Chang and K. Scarbrough, Costas arrays with small number of cross-correlations,'' *IEEE Transactions on Aerospace and Electronic Systems*, vol. 25, no. 1, pp. 109–112, January 1989.
- [5] J. P. Costas, Medium Constraints on Sonar Design and Performance,'' FASCON Convention Record, pp. 68A–68L, 1975.
- [6] J. P. Costas, A Study of a Class of Detection Waveforms Having Nearly Ideal Range-Doppler Ambiguity Properties,'' *Proceedings of the IEEE*, vol. 72, no. 8, pp. 996–1009, Aug. 1984.
- [7] D. M. Drumheller and E. L. Titlebaum, Crosscorrelation Properties of Algebraically Constructed Costas Arrays,'' *IEEE Transactions* on Aerospace and Electronic Systems, vol. AES-27, no. 1, pp. 2–10, 1991.
- [8] P. ErdDs, R. Graham, I. Ruzsa, and H. Taylor, "Bounds for arrays of dots with distinct slopes or lengths," *Combinatorica*, vol. 12., no. 1, pp. 39–44, 1992.
- [9] T. Etzion, Combinatorial designs with Costas array properties," *Discrete Mathematics*, vol. 93, pp. 143–154, 1991.
- [10] E. C. Farnett and G. H. Stevens, Pulse Compression Radar,'' in book, *Radar Handbook*, second ed., edited by Merrill Skolnik, Chapter 10, McGraw-Hill, New York, 1990.
- [11] A. Freedman and N. Levanon, Any Two N×N Costas signals must have at least one common ambiguity sidelobe if N>3 — A Proof," *Proceedings of the IEEE*, vol. 73, no. 10, pp. 1530–1531, October 1985.

- [12] R. Gagliardi, J. Robbins and H. Tazlor, "Acquisition sequences in PPM communications," *IEEE Transactions on Information Theory*, vol. IT-33, no. 5, pp. 738–744, 1987.
- [13] S. W. Golomb, "A mathematical theory of discrete classification," *Fourth London Symposium on Information Theory*, pp. 404–425, published by Butterworth, 88 Kingsway, London, 1961.
- [14] S. W. Golomb, Algebraic Constructions for Costas Arrays,'' Journal of Combinatorial Theory, series A, vol. 37, pp. 13–21, 1984.
- [15] S. W. Golomb, The T₄ and G₄ Constructions for Costas Arrays,'' *IEEE Transactions on Information Theory*, vol. IT-38, no. 4, pp. 1404–1406, July 1992.
- [16] S. W. Golomb and H. Taylor, Two-dimensional Synchronization Patterns for Minimum Ambiguity,'' *IEEE Transactions on Information Theory*, vol. IT-28, pp. 600-604, 1982.
- [17] S. W. Golomb and H. Taylor, Constructions and Properties of Costas Arrays,'' *Proceedings of the IEEE*, vol. 72, no. 9, pp. 1143–1163, Sep. 1984.
- [18] N. Levanon, *Radar Principles*, Wiley, New York, 1988.
- [19] S. Maric and E. Titlebaum, A class of frequency hop codes with nearly ideal characteristics for use in multiple–access spread–spectrum communications and Radar and Sonar systems,'' *IEEE Transactions on Communications*, vol. 40, no. 9, pp. 1442–1447, September 1992.
- [20] O. Moreno, A Shifting Property of Some Costas Arrays,'' Ars Combinatoria, vol. 33, pp. 157–160, 1992.
- [21] O. Moreno, private letter to author, 1993.
- [22] O. Moreno, private letter to author, 1994.
- [23] O. Moreno, private letter to author, 1995.
- [24] O. Moreno and R. Velez, Computer programming techniques in Costas arrays and Queens arrays, Technical Report, Gauss Research Lab., University of Puerto Rico, 1985
- [25] O. Moreno and J. G. Ramirez, An algorithm for the enumeration of certain permutations, Technical Report, Gauss Research Lab., University of Puerto Rico, 1985

- [26] O. Moreno and J. Sotero, Computational Approach to Conjecture A of Golomb,'' *Congressus Numerantium*, vol. 70, pp. 7–16, 1990.
- [27] J. P. Robinson, "Golomb Rectangles," *IEEE Transactions on Information Theory*, vol. IT-31, no. 6, pp. 781–787, Nov. 1985.
- [28] J. Silverman, V. E. Vickers, and J. M. Mooney, "On the number of Costas arrays as a function of array size," *Proceedings of the IEEE*, vol. 76, pp. 851–853, 1988.
- [29] M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt, *Spread Spectrum Communications*, Computer Science Press, 1985.
- [30] Hong Y. Song, On Aspects of Tuscan Squares, Ph.D. Dissertation, University of Southern California, 1991.
- [31] Hong Y. Song, On the Existence of circular Florentine arrays,'' pre-print, unpublished, May, 1992.
- [32] Hong Y. Song and S. W. Golomb, "Generalized Welch-Costas sequences and their application to Vatican arrays," *Contemporary Mathematics*, vol. 168, pp. 341–351, American Mathematical Society, January 1994.
- [33] H. Y. Song and S. W. Golomb, Algebraic constructions for Frequency Hop Patterns,'' pre-print, unpublished, 1994.
- [34] H. Y. Song, I. S Reed and S. W. Golomb, On the Non-periodic Cyclic Equivalence Classes of Reed-Solomon Codes,'' *IEEE Transaction on Information Theory*, vol. 39 no.4, pp. 1431–1434, July 1993.
- [35] H. Taylor, "Costas Arrays," Part IV, Chater 7, in book, *The CRC Handbook of Combinatorial Designs*, edited by C. Colbourn and J. Dinitz, pp. 256–260, New York, CRC Press, 1996.
- [36] H. Taylor and S. W. Golomb, *Rulers Part I*, Communication Sciences Institute Report 85–05–01, University of Southern California, 1985.

n	C(n)	c(n)	s(n)
1	1	1	1
2	2	1	1
3	4	1	1
4	12	2	1
5	40	6	2
6	116	17	5
7	200	30	10
8	444	60	9
9	760	100	10
10	2160	277	14
11	4368	555	18
12	7852	990	17
13	12828	1616	25
14	17252	2168	23
15	19612	2467	31
16	21104	2648	20
17	18276	2294	19
18	15096	1892	10
19	10240	1283	6
20	6464	810	4
21	3536	446	8
22	2052	259	5
23	872	114	10
24	at least 1	at least 1	0
25	at least 1	at least 1	2
26	at least 1	at least 1	2
27	at least 1	at least 1	7
28	at least 1	at least 1	0
29	at least 1	at least 1	5
30	at least 1	at least 1	4
31	at least 1	at least 1	0
32	??	??	0

그림 10. Values of C(n), c(n), and s(n), for $1 \le n \le 32$.