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Abstract

A k x n circular Florentine array is an array of n distinct symbols in
k circular rows such that (1) each row contains every symbol exactly once
and (2) for any pair of distinct symbols (a, b) and for any integer m from 1
to n—1 there is at most one row in which b occurs m steps to the right of a.
For each positive integer n = 2, 3,4, ..., define F.(n) to be the mazimum
number such that a F.(n) x n circular Florentine array exists.

From the main construction of this paper for a set of mutually orthog-
onal Latin squares (MOLS) having an additional property, and from the
known results on the existence/non-existence of such MOLS obtained by
others, it is now possible to reduce the gap between the upper and lower
bounds on F,(n) for infinitely many additional values of n not previously
covered. This is summarized in the table for all odd n up to 81.

IPart of this paper is based on the presentation in GF(60), Oxnard, CA, May 29 - 31, 1992
in celebration of Professor S. W. Golomb’s 60th birthday.

2First submitted in May 27, 1992; revised in September 3, 1992 and accepted by the guest
editor H. Taylor; final revision done in January 12, 1998.

3Original manuiscript was written based on the work done while the author was with Com-
munication Sciences Institute, University of Southern California, Los Angeles, CA 90089-2565.



1 Introduction

It would always be better to begin by a few examples rather than a formal
definition to describe a combinatorial object called circular Florentine array. An
example of a 4 x 5 circular Florentine array is shown in Figure I. Two other

examples are shown below in Figures II and III, which are a 4 x 15 and 4 x 27

circular Florentine arrays, respectively.

0,1,...,n — 1 exactly once. Observe further that for any symbol a and for any

integer m =1,2,..

all distinct throughout the array.
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Figure I: A 4 x 5 circular Florentine array

Note that each row has every symbol

.,m — 1 the symbols in m steps circularly to the right of a are

e
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Figure II: A 4 x 15 circular Florentine array
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Formally, a k x n circular Florentine array is an array of n distinct symbols in
k circular rows such that each row contains every symbol exactly once and that

for any pair of distinct symbols (a, b) and for any integer m from 1 to n —1 there

Figure I1I: A 4 x 27 circular Florentine array




is at most one row in which b occurs m steps (circularly) to the right of a. For
convienence, define F,(n) for each positive integer n to be the mazmum number
such that a F.(n) X n circular Florentine array exists. The examples shown in
Figures I, II, and III prove that F.(5) > 4, F.(15) > 4, and F.(27) > 4.

Proposition 1.1 p—1 < F,(n) <n —1, for each n =2,3,4,..., where p is the

smallest prime factor of n.

Proof : Let n > 2 be a positive integer. For any fixed symbol a, since there are
at most n— 1 ordered pairs of the form (a, x) where a # x, the number of circular
Florentine rows that could possibly exist is clearly at most n — 1. On the other
hand, it is not hard to show that the top p — 1 rows of the multiplication table
mod n with borders in the natural order form a (p — 1) X n circular Florentine
array, where p is the smallest prime factor of n. [ |

The exact value of F.(n) and the related problems have been investigated by
others [GET90, GT85, Song91, Tay91] for the direct application of F.(n) rows of
a circular Florentine array into communication signal designs such as frequency
hopping patterns, radar arrays and sonar arrays. There are at least two previous
results concerning the value of F,.(n). These are (1) F.(n) = 1 whenever n is
even [GET90], and (2) F.(n) < n — 2 whenever “Bruck-Ryser Theorem” rules
out the existence of a finite projective plane of order n [GET90, EGT89, Rys82,
Hal86].

In Section 2, we will prove the following necessary and sufficient condition for
the existence of a k& x n circular Florentine array. The construction in the proof
results in not only the above two previous results, but also some refinement for
the exact value of F,.(n) for infinitely many values of n other than listed in (1) or
(2) above.

Theorem 1.1 There exists a circular Florentine array of size k x n if and only
if there exists a set of k mutually orthogonal Latin squares of order n such that
the rows of any square are cyclic shifts of each other and that every square is

obtainable from any other only by permuting the rows.



n | Fu(n) LB UB n | F.(n) LB UB

3 2 prime 43 42 prime

5 4 prime 45| 2,...,43 * Cor.2.3

7 6 prime 47 46 prime

9 2 search 49 16,...,48 * *

11 10 prime 5112,...,48 * Cor.2.4

13 12 prime 23 02 prime

15 4 search 55 | 4,...,54 * *

17 16 prime 57T | 7,...,55 I Cor.2.1

19 18 prime 29 o8 prime

21 4,...,19 I Cor.2.1 || 61 60 prime

23 22 prime 63|6,...,62 I *

25 4,...,24 * * 65|4,...,63 * Cor.2.3

271 4,...,26 | search * 67 66 prime

29 28 prime 69|2,...,66 * Cor.2.4

31 30 prime 71 70 prime

3313,...,30 T Cor.2.4 || 73 72 prime

3514,...,33 * Cor.2.3 || 75(2,...,73 * Cor.2.3

37 36 prime 7716,...,75 * Cor.2.1

3913,...,38 T * 79 78 prime

41 40 prime 811]2,...,80 * *
Table I: Possible values of Fi.(n) for all odd n from 3 to 81.

* — basic lower bound, one less than the smallest prime factor.

T— Theorem 1.1 and Schellenberg et. al.

I— Theorem 1.1 and Jungnickel (See Section 3 for f, 1, and “search”).

* — basic upper bound, which is n — 1.

Cor.— See Section 2 for Corollaries.




Finally, all possible values of F.(n) for 3 < n < 81, n odd, are shown in Table
1. This summarizes our current state of knowledge on F,(n) and is an updated
table from [Song91].

2 Proof by construction and its implication

Proof of Theorem 1.1 : Suppose we are given a k X n circular Florentine
array, which will be denoted by C' = (¢(4, 7)) in matrix notation where ¢(i,j) €
{ag,a1,...,a, 1} fori=1,2,... kand j =0,1,2,...,n—1. Assume that the top
row is in the natural order ay, a1, as, ..., a, 1 (rename the symbols if necessary).

We will construct a set of k squares, Ly, Lo, ..., L, of size n xn using only the
cyclic shits of ag, a1, as, ..., a,_1. Therefore, it is sufficent to specify the left-most
column of each square (column 0). Rows and columns of the square have lables

0,1,2,...,n—1. Foreach x = 1,2, ..., k, consider the following relation:
Fori=0,1,2,...,n—1, c(z,i)=a; = L,(j,0) =a,. (2.1)

First, note that the left-most column of L, given by Eq.(2.1) is the inverse
permutation of those induced by the row x of C'. Here, we use the interpretation
of each row as a permutation of symbols by the rule ¢(1,i) — ¢(z,4) for i =
0,1,2,...,n — 1. Therefore, each column of L, is a permutation. Since each row
is a cyclic shift of ag, aq,...,a,_1, this proves that L, is Latin.

To show the orthogonality of L, and L; for some 1 < s < t < k, suppose, on
the contrary, that they are not orthogonal. Then, there are two corresponding
positions in both the squares such that the two ordered pairs from these positions

are the same. That is, for some indices x, ¥y, u, and v,
Ly(z,y) = Ls(u,v) =a; and Ly(z,y) = Ly(u,v) = aj,
for some symbol a; and a;. This implies

Ly(z,0) = aigy, Li(x,0)=ajs,, and

LS(U, 0) = Giow, Lt(ua 0) = Qjow,



where © denotes mod n subtraction. This can happen only if

c(s,ioy)= a, =c(t,joy), and
c(s,i0v)= a, =c(t,joOv).

But, it implies that the symbol a, is y © v steps to the right of a, in both the
row s and the row ¢ of C, a desired contradiction.
Similarly for the converse. [ ]

From the above Theorem, the following two results can easily be derived.

Corollary 2.1 [GET90, EGT89, Rys82| F.(n) < n — 2 whenever the Bruck-
Ryser Theorem rules out the existence of a finite projective plane of order n, or
more specifically, whenever n =1 or 2 (mod 4) such that the square-free part of

n contains at least one prime factor p which is congruent to 3 mod 4.
Corollary 2.2 [GET90] F.(n) = 1 whenever n is even.

Proof : Note that any of the Latin squares given by the construction is es-
sentially an addition table of integers mod n, and hence does not have a single
transversal [DK74] if n is even. N
Additional results on the non-existence of an (n — 1) x n circular Florentine
array can be obtained from the non-existence of MOLS described in Theorem 1.1

by de Launey [dL86, Jun90]. This can be translated in our terminology as:

Corollary 2.3 F.(n) < n — 2 whenever the existence of the set of n —1 MOLS
of order n having the property described in Theorem 1.1 is ruled out, or more
specifically, whenever m is a quadratic non-residue mod p where m % 0 (mod p)

s an integer dividing the square-free part of n and p # 2 is a prime divisor of n.

For example, for each positive integer ¢, if n = 5 - 7, then n = 3 (mod 4) and
7 = 2 (mod 5) is a quadratic non-residue modulo 5. Therefore, there does not
exist an (n — 1) X n circular Florentine array whenever n = 5'- 7 for any positive
integer . These are infinitely many additional values of n, not covered by the
Bruck-Ryser Theorem (See Cor. 2.1).



Woodcock [Woo86] in 1986 proved independently that the set of n —1 MOLS
of order n having the property described in Theorem 1.1 does not exist whenever
n = 15 (mod 18). Though these values of n are already ruled out by Corollary 2.3,

the proof actually rules out the existence of n — 2 such squares.

Corollary 2.4 F,.(n) < n — 3 whenever n =15 (mod 18).

3 Lower bound on F.(n) and conclusion

The basic lower bound which is one less than the smallest prime factor of n
(Prop. 1.1) can be improved by the constructions from Jungnickel [Jun80] and
Theorem 1.1. For n < 100, this gives F,.(21) > 4, F,(57) > 7, and F.(63) > 6.

Schellenberg, van Rees, and Vanstone in 1978 have searched by computer for
those MOLS described in Theorem 1.1 [SYRV78]. From their explicit examples of
3 MOLS of order n = 33 and n = 39, and from Theorem 1.1, we have F,.(33) > 3
and F,(39) > 3.

It is believed that an (n — 1) x n circular Florentine array does not exist
whenever n is not a prime. When p is a prime, the multiplication table of the
integers 1,2,...,p—1 mod p (by adjoining a constant column of all 0’s) provides
an example of a (p— 1) x p circular Florentine array. Therefore, F.(p) =p—1ifp
is a prime. In addition to the corollaries in the previous section, two more cases
were determined by some exhaustive computer search, which are F.(9) < 2, and
F.(15) < 4, the latter by R. Wilson and R. Roth [WR].
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