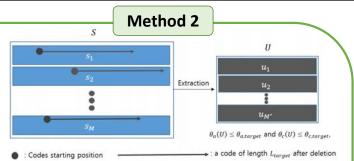

Some constructions of truncated Gold codes for GNSS

*Gangsan Kim, Hong-Yeop Song and **Deok won Lim * Yonsei University, **Korea Aerospace Research Institute 2019 International Conference on ICT Convergence(ICTC 2019)



Introduction

- GNSS systems usually use the spreading codes of length 10,230.
- Those Spreading codes are generated from the mother codes whose maximum correlation values are optimal or sub-optimal such as gold, kasami, weil codes.
- Those mother codes' lengths are not equal to 10,230. In gold code case, possible lengths are far from 10,230.
- We propose some truncated gold code families of length 10,230 to minimize non-trivial correlation maximum.
- Proposed truncated gold codes performance far surpass current GNSS truncated gold codes'

- **Step1.** Using 2[*M*/2] codes without overlapping in S, randomly make $\lfloor M/2 \rfloor$ pairs and connect two codes in each pair to make one code.
- Step2. From 2[M/2] codes generated by Step 1, randomly set the starting point of each code and cut it to length L_{target} . From this step, we get $\lfloor M/2 \rfloor$ codes of period L_{target} .
- Step3. Among the |M/2| codes from Step2, choose M^* codes such that all non-zero phase even/odd correlations are bounded by $\left[-\theta_{a,target},\theta_{a,target}\right]$ and $\left[-\hat{\theta}_{a,target}, \hat{\theta}_{a,target}\right]$, repectively. If the number of such codes is smaller than M^* , reset $\theta_{a,target}$ and $\hat{\theta}_{a,target}$ to larger values than now and go to Step1.
- Step4. Let U be the family of M* codes generated by **Step3**, And then, calculate $\theta_a(U)$, $\hat{\theta}_a(U), \theta_c(U)$ and $\hat{\theta}_c(U)$.
- Step5. Repeat Step1-4 N times, and determine spreading code family U which has minimum $\max\{\theta_c(U), \hat{\theta}_c(U)\}$ among N code families.

- **Step1.** From *M* codes in *S*, randomly set randomly set the starting point of each code and cut it to length L_{target} . From this step, we get M codes of period *L_{target}*.
- Step2. Among the *M* codes from Step1, choose M* codes such that all non-zero phase even/odd correlations are bounded by $\left[-\theta_{a,target}, \theta_{a,target}\right]$ and $\left[-\hat{\theta}_{a,target},\hat{\theta}_{a,target}\right]$, repectively. If the number of such codes is smaller than M^* , reset $\theta_{a,target}$ and $\ddot{\theta}_{a,target}$ to larger values than now and go to **Step1**.
- Step3. Let U be the family of M* codes generated by **Step2**, And then, calculate $\theta_a(U)$, $\hat{\theta}_a(U), \theta_c(U)$ and $\hat{\theta}_c(U)$.
- Step4. Repeat Step1-3 N times, then determine spreading code family U which has minimum $\max\{\theta_c(U), \hat{\theta}_c(U)\}$ among N code families.

 $\theta_a(U)$, $\hat{\theta}_a(U)$: nontrivial even/odd autocorrelation maximum

 $\theta_c(U)$, $\hat{\theta}_c(U)$.: even/odd cross correlation maximum

Name	Period	Family size	θ _a (U) (dB)	$\hat{ heta}_a(U)$ (dB)	$ heta_c(U)$ (dB)	$\hat{ heta}_c(U)$ (dB)
GPS L5 data	10,230	74	-29.02	-26.86	-26.35	-25.32
GPS L5 pilot		420	-28.55	-26.21	-26.35	-25.20
Galileo E5a		100	-28.55	-28.64	-25.67	-25.87
Galileo E5b		100	-28.74	-28.51	-25.20	-25.04
Method1		100	-29.42	-29.42	-27.17	-26.83
Method2		100	29.32	-29.27	-26.50	-26.35

• Mother code: gold codes of length 16,383(for Method1), 8,192(for Method2)

Target period: 10,230, which is usually used in GNSS systems.

Communication Signal Design Lab

Results

