

Some notes on the binary sequences of length 2^n-1 with the run property

The 9th International Workshop on Signal Design and its Applications in Communications

Gangsan Kim, Min Hyung Lee, and Hong-Yeop Song

Communication Signal Design Lab.
School of Electrical and Electronic Engineering
{gs.kim, mhlee95, hysong}@yonsei.ac.kr

Contents

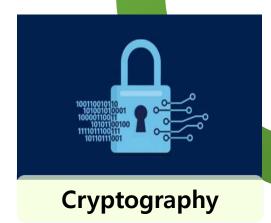
- I. Introduction
- II. The number of run sequences
- III. The distribution of n-tuple vectors in the run sequences
- IV. Conclusion

I. Introduction

PN sequence application

Communications

Binary pseudorandom sequences



Simulations

Randomness characteristics

Ideal autocorrelation

Many studies are conducted in terms of cyclic hadamard matrix [3], [11].

Multiplier

Helpful in the studies on ideal autocorrelation as a necessary condition [1], [7].

Randomness (binary sequences)

Span

- -Correspondence with the de-Bruijn sequences
- Many studies are conducted in terms of their construction and some property [8], [9].

Run

Has not much related research results.

In this talk, ...

In this talk,

- calculate the number of run sequences of length $2^n 1$
- present some interesting properties of the run sequences of length $2^n - 1$.

II. The number of run sequences of length $2^n - 1$

Run sequence

Definition 1. Run property [4], [5], [10]

A binary sequence of length $2^n - 1$ is said to have the **run property** if it has the run distribution as shown in the following table. For simplicity, we call such a sequence **a run sequence**.

Length	# of 1's run	# of 0's run					
n	1	0					
n-1	0	1					
n-2	20	20					
n-3	2^1	2^1					
•••							
2	2^{n-4}	2^{n-4}					
1	2^{n-3}	2^{n-3}					
Total	2^{n-2}	2^{n-2}					
Grand total	2^{n-1}						

The number of run sequences

Theorem 1.

The number l_n of cyclically distinct run sequences of length 2^n-1 is

$$l_n = \frac{1}{2^{n-2}} \left(\frac{2^{n-2}}{2^{n-3}, 2^{n-4}, \dots, 2^0, 1} \right)^2.$$

Corollary 1.

Let l_n be as defined in Theorem 1. Then

$$\frac{l_{n+1}}{l_n} = \frac{1}{2} {2n-1 \choose 2^{n-2}}^2 \approx \frac{2}{\pi} 2^{2^n - n}.$$

Proof of Cor1. Use stirling's approximation [2].

Proof of Theorem 1

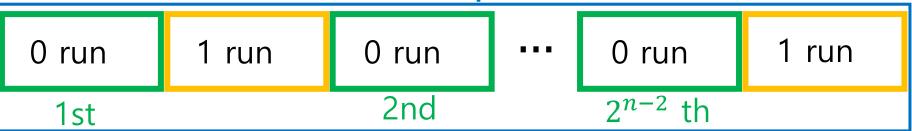
The run sequence

Length	# of 0's run
\boldsymbol{n}	0
n-1	1
n-2	20
n-3	2 ¹
•••	
2	2^{n-4}
1	2^{n-3}
Total	2^{n-2}

Fix the starting position as the unique run $\mathbf{0}_{n-1}$

 $\times 0_x$: 0's run of length x

The run sequence



Length	i	# of 0's ru	n
n		0	
n-1		1	
n-2		2^{0}	
n-3		2^{1}	/
•••			
2		2^{n-4}	
1		2^{n-3}	
Total		2^{n-2}	

Calculate the number of permutations of the other **O's run**:

$$\binom{2^{n-2}-1}{2^{n-3},2^{n-4},\ldots,2^0}$$

Length	;	# oi 1's ru	n
\boldsymbol{n}		1	
n-1		0	
n-2		2^0	
n-3		2^1	
•••			
2		2^{n-4}	
1		2^{n-3}	
Total		2^{n-2}	

Calculate the number of permutations of 1's run:

$$\binom{2^{n-2}}{2^{n-3}, 2^{n-4}, \dots, 2^0, 1}$$

Product each number of permutations:

$$l_n = {2^{n-2} - 1 \choose 2^{n-3}, 2^{n-4}, \dots, 2^0} {2^{n-2} \choose 2^{n-3}, 2^{n-4}, \dots, 2^0, 1}$$

$$=\frac{1}{2^{n-2}}\left(\frac{2^{n-2}}{2^{n-3},2^{n-4},\dots,2^0,1}\right)^2$$

The number of run sequences

The number of binary sequences of length 2^{n+1} -1 is about 2^{2^n} times of the number of binary sequences of length 2^n -1.

Very similar for larger *n*

The number of run sequences of length 2^{n+1} -1 is about $\frac{2}{\pi}2^{2^{n}-n}$ times of the number of run sequences of length 2^{n} -1.

III. The distribution of n-tuple vector in the run sequences of length $2^n - 1$

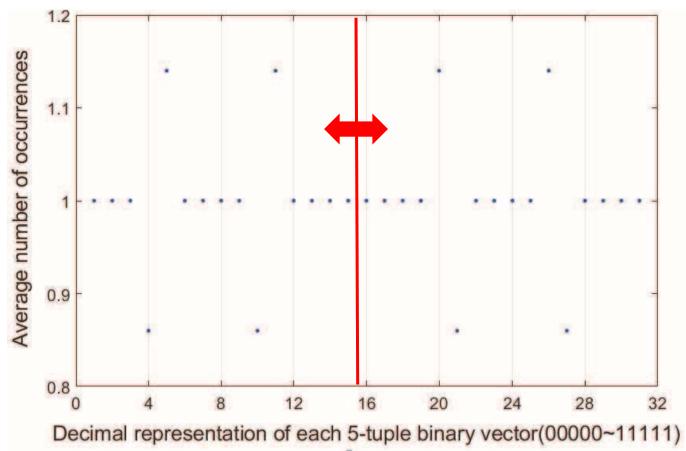
Span property

Definition 2. Span property [4], [5], [10]

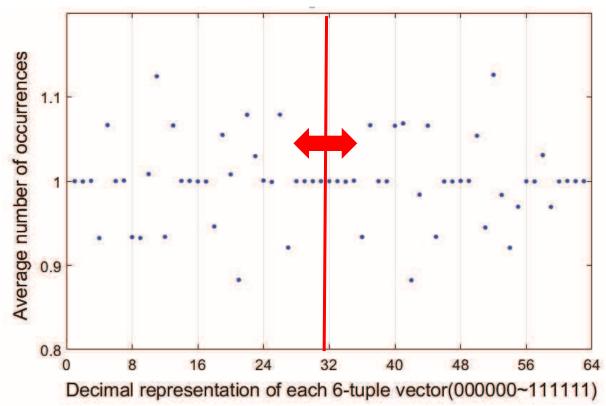
A binary sequence of length $2^n - 1$ is said to have the **span property** if every n-tuple vector except for the all-zero vector occurs exactly once in one period. For simplicity, we call such a sequence **a span sequence**.

A span sequence is always a run sequence, but not conversely. In this talk, we investigate the n-tuple vector distribution property of run sequences with or without span property

Average occurrence of *n*-tuple vector



Average occurrence of every **5**-tuple vector in all cyclically different run sequences of length **31**.



Average occurrence of every 6-tuple vector in 1,000,000 cyclically different run sequences of length 63

Complement correspondence

Theorem 2.

For any run sequence s_1 of length $2^n - 1$, there corresponds to another run sequence s_2 such that

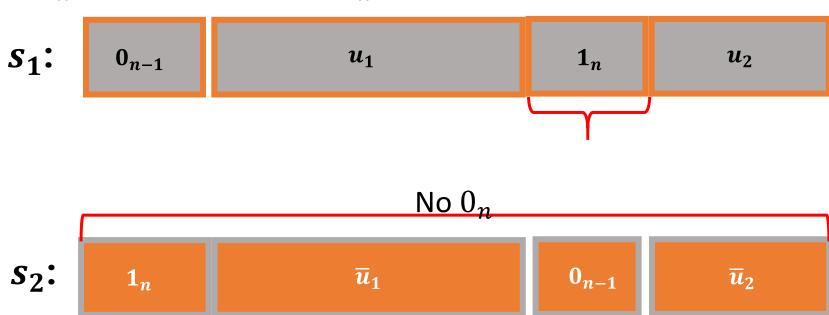
```
# of occurrences of v in s_1
= # of occurrences of \bar{v} in s_2,
```

for any n-tuple vector v except for the all-zero and the all-one vectors.

Theorem 2 implies that average occurrence of n-tuple vectors v and \overline{v} are exactly same except for the all-zero and the all-one vectors.

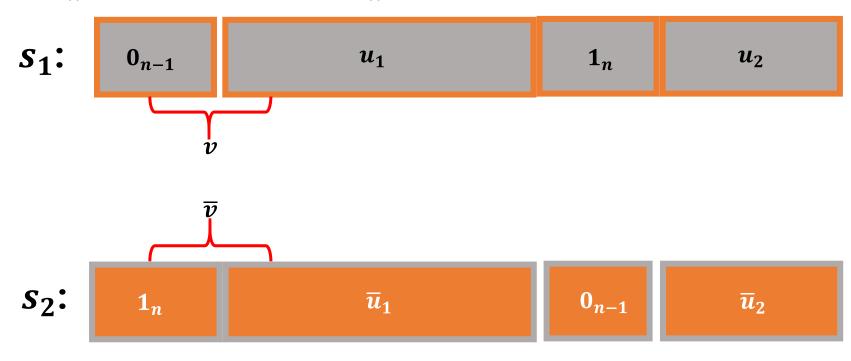
Proof of Theorem 2

 $\times 0_x$: 0's run of length x, 1_x : 1's run of length x

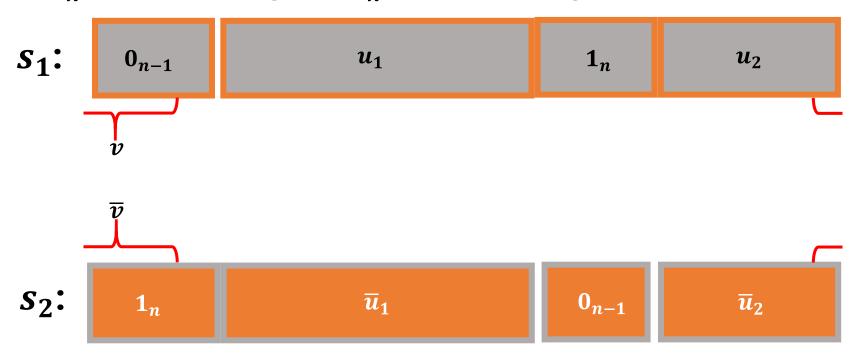


For the run sequence s_1 , define s_2 as above. Obviously, s_2 is the run sequence and there is no 0_n (complement of 1_n) in s_2 .

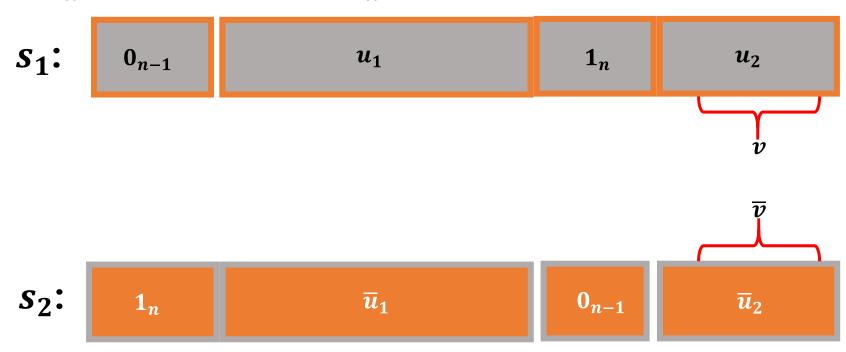
 $\times 0_x$: 0's run of length x, 1_x : 1's run of length x



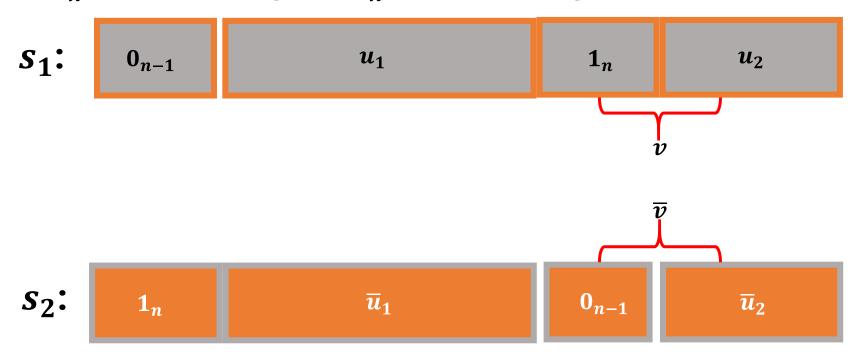
 $\times 0_x$: 0's run of length x, 1_x : 1's run of length x



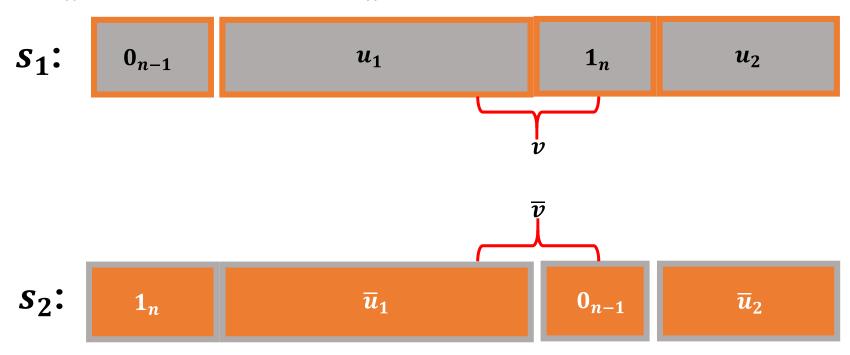
 $\times 0_x$: 0's run of length x, 1_x : 1's run of length x



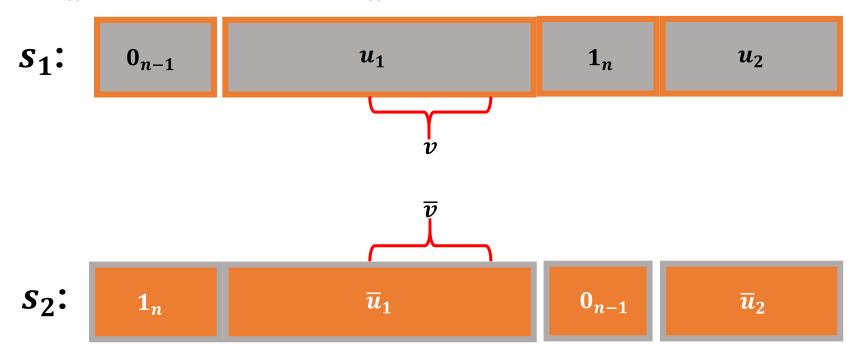
 $\times 0_x$: 0's run of length x, 1_x : 1's run of length x



 $\times 0_x$: 0's run of length x, 1_x : 1's run of length x

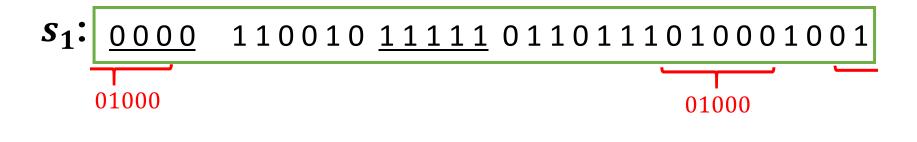


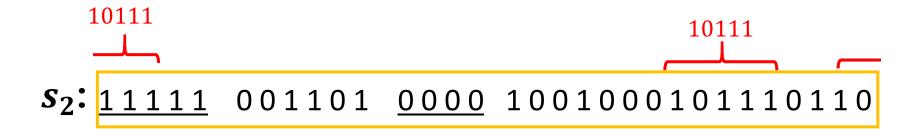
 $\times 0_x$: 0's run of length x, 1_x : 1's run of length x



Example of Theorem 2

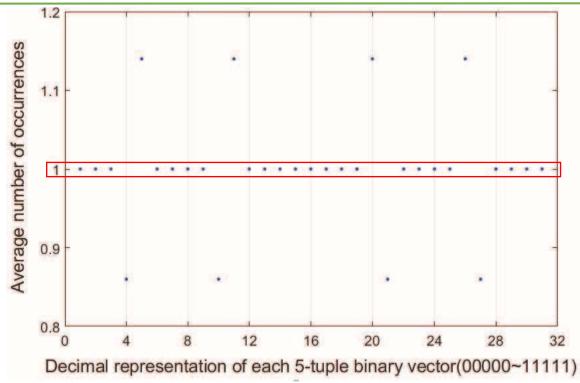
The following two sequenes of length 31 are examples of Theorem 2:





Example of Theorem 2 (cont.)

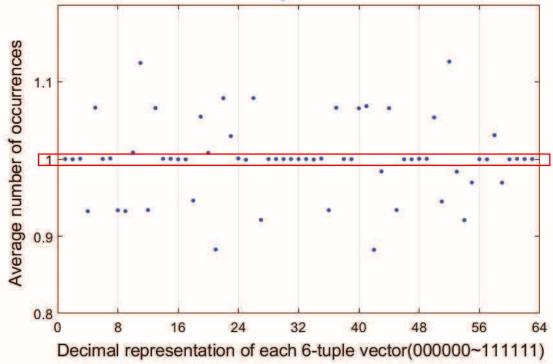
v: 5-tuple vector	# of \imath in s_1)	# of v in s_2		\overline{v} : comple- ment of v		# of \overline{v} in s_1		$\#$ of \overline{v} in s_2		
00000	0			0	11111		1			1	
00001	1			1	11110		1			1	
00010	1			2	11101		2			1	
00011	1			0	11100		0			1	
00100	2			2	11011		2			2	
00101	1			1	11010		1			1	
00110	1			1	11001		1			1	
00111	0			0	11000		0			0	
01000	2			2	10111		2			2	
01001	1			1	10110		1			1	
01010	0			0	10101		0			0	
01011	1			1	10100		1			1	
01100	1			0	10011		0			1	
01101	1			2	10010		2			1	
01110	1			1	10001		1			1	
01111	1			1	10000		1			1	



Average occurrence of every **5**-tuple vector in all cyclically different run sequences of length **31**.

It is surprising that there exist some n-tuple vectors such that the average number is equal to 1.

Which n-tuple vectors have an average of 1?



Average occurrence of every 6-tuple vector in 1,000,000 cyclically different run sequences of length 63.

It is surprising that there exist some n-tuple vectors such that the average number is equal to 1.

Which *n*-tuple vectors have an average of 1?

Theorem 3.

The following 7 n-tuple vectors **occur exactly once** in any run sequence of length $2^n - 1$:

$$a0_{n-2}b$$
 and $a1_{n-2}b$,

where $a, b \in \{0,1\}$, except for the all-zero vector.

Theorem 3 is the subcase of average of 1.

The vectors whose average is one

Theorem 4.

The average number of occurrences of the following n-tuple vectors in all the run sequence of length $2^n - 1$ is equal to 1:

$$a0_{k}1_{n-2-k}b$$
 and $a1_{k}0_{n-2-k}b$,

where $a, b \in \{0,1\}$ and k = 0, 1, ..., n - 2, except for the all-zero vector.

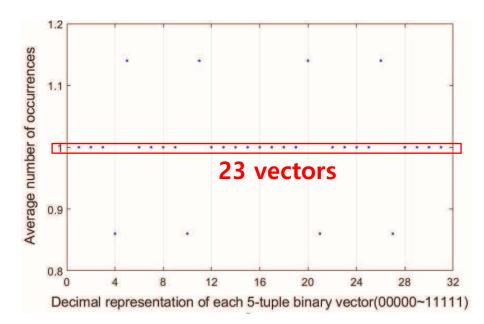
Example of Theorem 3, 4

23 vectors

n = 5

00011, 00111, 11100, 11000, 00010, 00110, 11101, 11001, 10011, 10111, 01100, 01000, 10010, 10110, 01101, 01001 in Theorem 4.

00001, 10000, 10001, 01110, 01111, 11110, 11111 in Theorem 3, 4.



The 23 vectors described in Theorem 4 cover all the 5-tuple vectors whose average number of 1.

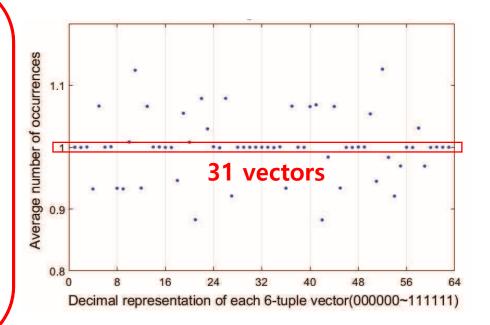
Example of Theorem 3, 4 (cont.)

31 vectors

n = 6

000011, 000111, 001111, 111100, 111000, 110000, 000010, 000110, 001110, 111101, 111001, 110001, 100011, 100111, 101111, 011100, 011000, 010000, 100010, 100110, 10110, 011101, 011001, 010001 in Theorem 4.

000001, 100000, 100001, 011110, 011111, 1111110, 1111111 in Theorem 3, 4.



The 31 vectors described in Theorem 4 cover all the 6-tuple vectors whose average number of 1.

IV. Conclusion

Conclusion

- Caluculate the number of run sequences of length 2^n-1 and approximate increase rate of that number by an exponential form of 2
- Present some interesting properties about n-tuple vector distribution of run sequences of 2^n-1 .

Future Works

- Study n-tuple vector distribution of run sequences of length 2^n for deBruijn sequences.
- Develop generating method for run, span and deBruijn sequences

Thank you

References

- [1] U. Cheng, and S. W. Golomb, "On the characteristics of PN sequences," *IEEE Transactions on Information Theory*, vol. 29(4), pp. 600-600, 1983.
- [2] J. Dutka,"The early history of the factorial function," *Archive for history of exact sciences*, vol. 43(3), pp. 225-249, 1991.
- [3] S. W. Golomb, and H-Y. Song, "A conjecture on the existence of cyclic hadamard difference sets," *Journal of statistical planning and inference*, vol. 62(1), p.39-41, 1997.
- [4] S. W. Golomb, "On the classification of balanced binary sequences of period 2n 1," *IEEE Transactions on Information Theory*, vol. 26(6), pp. 730-732, 1980.
- [5] S.W. *Golomb, Shift register sequences*, CA, Holden-Day, San Francisco, 1967; 2nd edition, Aegean Park Press, Laguna Hills, CA, 1982; 3rd edition, World Scientific, Hackensack, NJ, 2017.
- [6] T. Helleseth, "Golomb's randomness postulates," *Encyclopedia of Cryptography and Security,* pp.516-517, 2011.

References

- [7] J-H. Kim and H-Y. Song, "Existence of cyclic Hadamard difference sets and its relation to binary sequences with ideal autocorrelation," *Journal of Communications and Networks*, vol. 1(1), pp.14-18, 1999.
- [8] J. Sawada, A. Williams, and D. Wong, "A surprisingly simple de Bruijn sequence construction," *Discrete Mathematics*, vol. 338(1), pp.127-131, 2016.
- [9] J. Sawada, A. Williams, and D. Wong, "A simple shift rule for k-ary de Bruijn sequences," *Discrete Mathematics*, vol. 340(3), pp.524-531, 2017.
- [10] H-Y. Song, "Feedback shift register sequences," Wiley Encyclopedia of Telecommunications, John Wiley & Sons, Hoboken, NJ 2003.
- [11] H-Y. Song, and S. W. Golomb, "On the existence of cyclic Hadamard difference sets," *IEEE Transactions on Information Theory*, vol.40(4), pp.1266-1268, 1994.

Appendix-Theorem3

Theorem 3.

The following 7 n-tuple vectors **occur exactly once** in any run sequence of length $2^n - 1$:

$$a0_{n-2}b$$
 and $a1_{n-2}b$,

where $a, b \in \{0,1\}$, except for the all-zero vector.

Appendix: Proof of Theorem 3

Length	0's run			
n	0			
n-1	1			
n-2	20	1's run	0_{n-2}	1's run
n-3	2^1			,
•••				
2	2^{n-4}	Only one $10_{n-2}1$		
1	2^{n-3}			
Total	2^{n-2}			

An n-tuple vector $\mathbf{10}_{n-2}\mathbf{1}$ occurs exactly once.

Length	0's run				
\boldsymbol{n}	0				
n-1	1			Only one 0_{γ}	₁₋₁ 1
n-2	2^0				~ <u>-</u>
n-3	2^1		1/6 8440	0	1's run
•••			1's run	0_{n-1}	15 Tull
2	2^{n-4}				
1	2^{n-3}	Only one 10_{n-1}			
Total	2^{n-2}				

Two n-tuple vector $\mathbf{10}_{n-1}$ and $\mathbf{0}_{n-1}\mathbf{1}$ occur exactly once.

Length	1's run			
\boldsymbol{n}	1			
n-1	0			
n-2	20	0's run	1_{n-2}	0's run
n-3	2^1			_
•••			Ĭ	_
2	2^{n-4}	Only one $01_{n-2}0$		
1	2^{n-3}			_
Total	2^{n-2}			

An n-tuple vector $\mathbf{01}_{n-2}\mathbf{0}$ occurs exactly once.

Append

Appendix: Proof of Theorem 3 (cont.)

Length	1's run			
\boldsymbol{n}			Only one 1	0
n-1	0	Only one $1_{n-1}0$		1-10
n-2	2^0			
n-3	2 ¹	0's run	1_n	0's run
•••				
2	2^{n-4}	Only one 01_{n-1}		
1	2^{n-3}			
Total	2^{n-2}	Only one 1_n		

Three n-tuple vector $\mathbf{1}_{n-1}\mathbf{0}$, $\mathbf{01}_{n-1}$, and $\mathbf{1}_n$ occur exactly once.

Appendix: Theorem 4

Theorem 4.

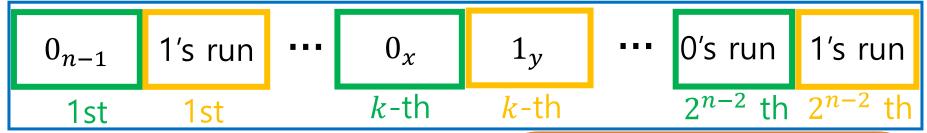
The average number of occurrences of the following n-tuple vectors in all the run sequence of length $2^n - 1$ is equal to 1:

$$a0_k 1_{n-2-k} b$$
 and $a1_k 0_{n-2-k} b$,

where $a, b \in \{0,1\}$ and k = 0, 1, ..., n - 2, except for the all-zero vector.

Appendix: Proof of Theorem 4

The run sequence



Length	1's run	0's run
n	1	0
n-1	0	1
n-2	2^0	2^0
•••		
x	No matter	2^{n-2-x}
y	2^{n-2-y}	No matter
•••		•••
2	2^{n-4}	2^{n-4}
1	2^{n-3}	2^{n-3}
Total	2^{n-2}	2^{n-2}

For
$$1 \le x, y \le n - 2$$
,

of run sequences such that

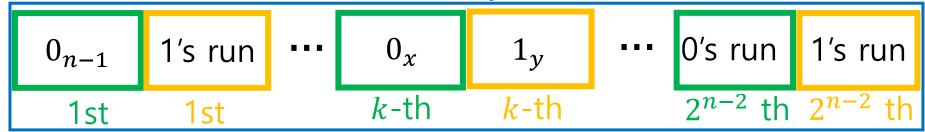
 k -th 0's run is 0_x and

 k -th 1's run is 1_y

$$= \begin{pmatrix} 2^{n-2} - 2 \\ 2^{n-3}, ..., 2^{n-2-x} - 1, ..., 2^0 \end{pmatrix}$$

$$\times \begin{pmatrix} 2^{n-2} - 1 \\ 2^{n-3}, ..., 2^{n-2-y} - 1, ..., 2^0, 1 \end{pmatrix}$$

The run sequence



Since k is possible for k= $2, 3, \dots, 2^{n-2}$, # of occurrences of $10_x 1_v 0$ in all the run sesquences is $(2^{n-2}-1)$ times :

$$= \begin{pmatrix} 2^{n-2} - 1 \\ 2^{n-3}, \dots, 2^{n-2-x} - 1, \dots, 2^{0}, 1 \end{pmatrix} = \begin{pmatrix} 2^{n-2} - 2 \\ 2^{n-3}, \dots, 2^{n-2-x} - 1, \dots, 2^{0} \end{pmatrix} \times \begin{pmatrix} 2^{n-2} - 1 \\ 2^{n-3}, \dots, 2^{n-2-x} - 1 \\ 2^{n-3}, \dots, 2^{n-2-y} - 1, \dots, 2^{0}, 1 \end{pmatrix} \times \begin{pmatrix} 2^{n-2} - 2 \\ 2^{n-3}, \dots, 2^{n-2-x} - 1, \dots, 2^{0} \end{pmatrix}$$

For $1 \le x, y \le n - 2$, # of run sequences such that k-th 0's run is 0_x and k-th 1's run is 1_v

$$= {2^{n-2} - 2 \choose 2^{n-3}, \dots, 2^{n-2-x} - 1, \dots, 2^0} \times {2^{n-2} - 1 \choose 2^{n-3}, \dots, 2^{n-2-y} - 1, \dots, 2^0, 1}$$

For $1 \le x, y \le n - 2$,

$$T(x,y) = \begin{pmatrix} 2^{n-2} - 1 \\ 2^{n-3}, \dots, 2^{n-2-x} - 1, \dots, 2^0, 1 \end{pmatrix} \times \begin{pmatrix} 2^{n-2} - 1 \\ 2^{n-3}, \dots, 2^{n-2-y} - 1, \dots, 2^0, 1 \end{pmatrix}$$

$$T(n-1,y) = \begin{pmatrix} 2^{n-2} - 1 \\ 2^{n-3}, \dots, 2^0 \end{pmatrix} \times \begin{pmatrix} 2^{n-2} - 1 \\ 2^{n-3}, \dots, 2^{n-2-y} - 1, \dots, 2^0, 1 \end{pmatrix}$$

$$T(x,n) = \begin{pmatrix} 2^{n-2} - 1 \\ 2^{n-3}, \dots, 2^{n-2-x} - 1, \dots, 2^0, 1 \end{pmatrix} \times \begin{pmatrix} 2^{n-2} - 1 \\ 2^{n-3}, \dots, 2^0 \end{pmatrix}$$

$$T(n-1,n) = \begin{pmatrix} 2^{n-2} - 1 \\ 2^{n-3}, \dots, 2^0 \end{pmatrix}$$

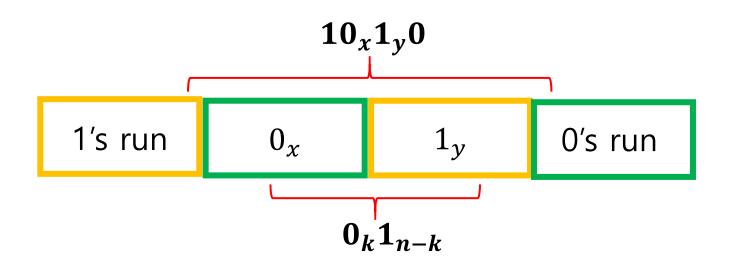
We prove only two cases for $2 \le k \le n-2$:

Case 1: the *n*-tuple vector $0_k 1_{n-k}$

Case 2: the *n*-tuple vector $10_{k-1}1_{n-k-1}0$

Case 1: the *n*-tuple vector $0_k 1_{n-k}$

The *n*-tuple vector $\mathbf{0}_k \mathbf{1}_{n-k}$ can be a part of $\mathbf{10}_x \mathbf{1}_y \mathbf{0}$ for $k \le x \le n-1$ and $n-k \le y \le n-2$ or y=n.



Case 1: the *n*-tuple vector $0_k 1_{n-k}$

The *n*-tuple vector $\mathbf{0}_k \mathbf{1}_{n-k}$ can be a part of $\mathbf{10}_x \mathbf{1}_y \mathbf{0}$ for $k \le x \le n-1$ and $n-k \le y \le n-2$ or y=n.

Therefore the total number of occurrences of $\mathbf{0}_k \mathbf{1}_{n-k}$ in all cyclically distinct run sequences of length 2^n-1 is equal to

$$\sum_{x=k}^{n-1} \sum_{y=n-k}^{n} T(x,y).$$

Case 1: the *n*-tuple vector $0_k 1_{n-k}$

$$\sum_{x=k}^{n-1} \sum_{y=n-k}^{n} T(x,y) = \left\{ \begin{pmatrix} 2^{n-2} - 1 \\ 2^{n-3}, \dots, 2^{0} \end{pmatrix} + \sum_{x=k}^{n-2} \begin{pmatrix} 2^{n-2} - 1 \\ 2^{n-3}, \dots, 2^{n-2-x} - 1, \dots, 2^{0}, 1 \end{pmatrix} \right\}$$

$$\times \left\{ \begin{pmatrix} 2^{n-2} - 1 \\ 2^{n-3}, \dots, 2^{0} \end{pmatrix} + \sum_{y=n-k}^{n-2} \begin{pmatrix} 2^{n-2} - 1 \\ 2^{n-3}, \dots, 2^{n-2-y} - 1, \dots, 2^{0}, 1 \end{pmatrix} \right\}$$

$$= \left(\frac{1}{2^{n-2}} + \sum_{x=k}^{n-2} \frac{2^{n-x-2}}{2^{n-2}} \right) \left(\frac{1}{2^{n-2}} + \sum_{y=n-k}^{n-2} \frac{2^{n-y-2}}{2^{n-2}} \right) \left(\frac{2^{n-2}}{2^{n-3}, \dots, 2^{0}, 1} \right)^{2}$$

$$= \frac{1}{2^{n-2}} \left(\frac{2^{n-2}}{2^{n-3}, \dots, 2^{0}, 1} \right)^{2} = \mathbf{l}_{n}$$

Case 2: the *n*-tuple vector $10_{k-1}1_{n-k-1}0$

The total number of occurrences of $\mathbf{10}_{k-1}\mathbf{1}_{n-k-1}\mathbf{0}$ is equal to

$$T(k-1,n-k-1) = {2^{n-2}-1 \choose 2^{n-3}, \dots, 2^{n-1-k}-1, \dots, 2^0, 1} \times {2^{n-2}-1 \choose 2^{n-3}, \dots, 2^{k-1}-1, \dots, 2^0, 1}$$
$$= \frac{2^{n-1-k}}{2^{n-2}} \cdot \frac{2^{k-1}}{2^{n-2}} {2^{n-2} \choose 2^{n-3}, \dots, 2^0, 1}^2 = \frac{1}{2^{n-2}} {2^{n-2} \choose 2^{n-3}, \dots, 2^0, 1}^2 = \boldsymbol{l_n}.$$