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| :; Randomness characteristics

Ideal autocorrelation Multiplier
o P )

Many studies are conducted Helpful in the studies on ideal
in terms of cyclic hadamard autocorrelation as a
matrix [3], [11]. necessary condition [1], [7].

Span -

[ -Correspondence with the
de-Bruijn sequences

- Many studies are
conducted in terms of their
construction and some

wroperty [8], [9].

Has not much related
research results.
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In this talk, ...

In this talk,

- calculate the number of run sequences of
length 2™ — 1

- present some interesting properties of
the run sequences of length 2™ — 1.




Il. The number of run sequences of
length 2" — 1




Run sequence
e 9

Definition 1. Run property [4], [5], [10]

A binary sequence of length 2™ — 1 is said to have the run
property if it has the run distribution as shown in the following
table. For simplicity, we call such a sequence a run sequence.

____length | _#oflsrun | _#0f0srun_ |

n 1 0
n—1 0 1
n—2 20 20
n—3 21 21

pn—4 Zn—4
Zn—3 Zn—3
Total 2n? 2n-?

zn—l

Grand total




.
= The number of run sequences
Theorem 1.

The number [, of cyclically distinct run sequences of

length 2™ — 1 is
2

1 n—2
n = 2n—2 (2"—3, n—4 .29, 1) '

Corollary 1.
Let [,, be as defined in Theorem 1. Then

lpt1 1 (2"‘1)2 ~ Ezzn—n_

L, 2\2n2 T

Proof of Corl. Use stirling’s approximation [2].



e
o.s'e Proof of Theorem 1

The run sequence

212 th

1st 2nd

# of 0’'s run

n—1
n—2 20
n—3

W Fix the starting position
as the unique run 0,,_4

X 0,: 0’s run of length x

N

[\
3
1

2n—2 10



.: Proof of Theorem 1 (cont.)

The run sequence

1st 2nd

212 th

n—-—1
n-—2 Calculate the  number  of
n-—3 2! permutations of the other 0’s run:
2 2n—4
n-3 pon—4 0
= e 2n=3,2n4 2

zn—Z
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.: Proof of Theorem 1 (cont.)

The run sequence

O run T run O run O run T run

n 1
n-—1 0
n—2 20 Calculate the number of
3 51 permutations of 1’s run:
2 211—4-
-3 —4 0
1 211—3 Zn ;Zn ) ---,2 ,1

12



.: Proof of Theorem 1 (cont.)

Product each number of permutations:

_ 2"_2——1_ 2n—2

In = (2"—3,2"—4, ...,20) (2"—3,2"—4, .., 20 1)

2

1 IN—2
~ gn-2 (2"—3, gn-4 90 1)

13



-
= The number of run sequences

The number of binary sequences of length 2**1-1 is about

ZWW of binary sequences of length 2™-1.

Very similar for larger n

The nuatber of run sequences of length 2"*1-1 is about
2

- times of the number of run sequences of length 2"-1 .

14



lll. The distribution of n-tuple vector
in the run sequences of length 2" — 1




9
g Span property

Definition 2. Span property [4], [5], [10]

A binary sequence of length 2™ — 1 is said to have the span
property if every n-tuple vector except for the all-zero vector
occurs exactly once in one period. For simplicity, we call such a
seguence a span sequence.

A span sequence is always a run sequence, but not
conversely. In this talk, we investigate the n-tuple vector
distribution property of run sequences with or without span

property

16



o
o Average occurrence of n-tuple vecto

1.2 . T

13F .

Average number of occurrences

08 | 1 1 | 1 | 1
0 4 8 12 16 20 24 28 32
Decimal representation of each 5-tuple binary vector(00000~11111)
Average occurrence of every 5 -tuple vector in all cyclically different run

sequences of length 31.

It looks symmetric. Is it exactly symmetric? 17



o Average occurrence of n-tuple vector({

11

Average number of occurrences

08 | | | | | | |
0 8 16 24 32 40 48 56 64
Decimal representation of each 6-tuple vector(000000~111111)

Average occurrence of every 6-tuple vector in 1,000,000 cyclically different run
sequences of length 63

It looks symmetric. Is it exactly symmetric? 18



S
= Complement correspondence

Theorem 2.

For any run sequence sq of length 2™ — 1, there corresponds to
another run sequence s, such that

# of occurrences of vin sq
= # of occurrences of vV in Sy,

for any n-tuple vector v except for the all-zero and the all-one
vectors.

Theorem 2 implies that average occurrence of n-tuple vectors v and
v are exactly same except for the all-zero and the all-one vectors.

19



Proof of Theorem 2

X 0,:0’srun of length x, 1,.: 1’s run of length x

\ )
|
No 0.,

For the run sequence s, define s, as above. Obviously, s, is the
run sequence and there is no 0,,(complement of 1,)) in s5,.

20



X 0,:0’srun of length x, 1,.: 1’s run of length x

1
v
1
[ 1

Except for the 1,,, any list v of adjacent n numbers in s; has
corresponding list v of adjacent n numbers in s,

<Y

21



X 0,:0’srun of length x, 1,.: 1’s run of length x

—
1%

g

Except for the 1,,, any list v of adjacent n numbers in s; has
corresponding list v of adjacent n numbers in s,

22



X 0,:0’srun of length x, 1,.: 1’s run of length x

r
v

v
1

Except for the 1,,, any list v of adjacent n numbers in s; has
corresponding list v of adjacent n numbers in s,

23



Proof of Theorem 2 (cont.)

X 0,:0’srun of length x, 1,.: 1’s run of length x

7
v

<3

Except for the 1,,, any list v of adjacent n numbers in s; has
corresponding list v of adjacent n numbers in s,

24



X 0,:0’srun of length x, 1,.: 1’s run of length x

r
v

v
1
[

Except for the 1,,, any list v of adjacent n numbers in s; has
corresponding list v of adjacent n numbers in s,

25



X 0,:0’srun of length x, 1,.: 1’s run of length x

Y
v

<

1
[ )|

Except for the 1,,, any list v of adjacent n numbers in s; has
corresponding list v of adjacent n numbers in s,

26



o
o Example of Theorem 2

The following two sequenes of length
31 are examples of Theorem 2:

$1:/0000 110010111110110111010001001
= —
01000 01000
10111

10111
L Y

$2.11111 001101 0000 1001000101110110

27
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oy'e Example of Theorem 2 (cont.)

vector in s9 ment of v in s9

00000 0 0 11111 1 1
00001 1 1 11110 1 1
00010 1 2 11101 2 1
00011 1 0 11100 0 1
00100 2 2 11011 2 2
00101 1 1 11010 1 1
00110 1 1 11001 1 1
00111 0 0 11000 0 0
01000 2 2 10111 2 2
01001 1 1 10110 1 1
01010 0 0 10101 0 0
01011 1 1 10100 1 1
01100 1 0 10011 0 1
01101 1 2 10010 2 1
01110 1 1 10001 1 1
01111 1 1 10000 1 1 08




o Average occurrence of n-tuple vector({

1.2 | . | T

Y3 F

par

Average number of occurrences

0.8 ; : : ; : : :
0 4 8 12 16 20 24 28 32
Decimal representation of each 5-tuple binary vector(00000~11111)
Average occurrence of every 5 -tuple vector in all cyclically different run

sequences of length 31.

It is surprising that there exist some n-tuple vectors such that the
average number is equal to 1.

Which n-tuple vectors have an average of 1?
29



. .
o Average occurrence of n-tuple vector({

TAT

Average number of occurrences

08 | | | | | | |
0 8 16 24 32 40 48 56 64
Decimal representation of each 6-tuple vector(000000~111111)

Average occurrence of every 6 -tuple vector in 1,000,000 cyclically different run
sequences of length 63.

It is surprising that there exist some n-tuple vectors such that the
average number is equal to 1.

Which n-tuple vectors have an average of 1?
30



.:T he vectors which occur exactly on

Theorem 3.

The following 7 n-tuple vectors occur exactly once in any run
sequence of length 2™ — 1:

a0,_,b and al,_»b,

where a, b € {0,1}, except for the all-zero vector.

Theorem 3 is the subcase of average of 1.

31



. m
o The vectors whose average is one

Theorem 4.

The average number of occurrences of the following n-tuple
vectors in all the run sequence of length 2™ — 1 isequal to 1 :

aOk 1n—2—kb and alkOn_Z_kb,

where a,b € {0,1}and k =0,1,...,n — 2, except for the all-
zero vector.

32



.: Example of Theorem 3, 4

23 vectors n=>5

/00011, 00111, 11100, 11000,\

00010, 00110, 11101, 11001,
10011, 10111, 01100, 01000,
10010, 10110, 01101, 01001

-

|1_--- » & & ® 4 ® 8 ®» % ® % ® » ® & » ----_I

Average number of occurrences

in Theorem 4. 23 vectors
00001, 10000, 10001, 01110, |
01111, 11110, 11111 y ) Y N S S . |
\ in Theorem 3, 4. Decimal representation of each 5-tuple binary vector(00000~11111)

The 23 vectors described in Theorem 4 cover all the 5-tuple vectors
whose average number of 1.

33



.: Example of Theorem 3, 4 (cont.)

31 vectors n==6

/000011, 000111, 001111, 111100,
111000, 110000, 000010, 000110,
001110, 111101, 111001, 110001,
100011, 100111, 101111, 011100,
011000, 010000, 100010, 100110,

10110, 011101, 011001, 010001
in Theorem 4.

e
=&
T

=
.
.
-
0
.
.
.
.
.
L]
.
L]
.
.
.
.
-
.
.
.
L
.
i

31 vec’gors' .

=
w
T

Average number of occurrences

000001, 100000, 100001, 011110, S T B S

01 1 1 1 1, 1 1 1 1 10, 1 1 1 1 1 1 Decimal representation of each 6-tuple vector(000000~111111)
\ in Theorem 3, 4. /

e
oo
=]

The 31 vectors described in Theorem 4 cover all the 6-tuple vectors
whose average number of 1.

34
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Conclusion

Caluculate the number of run sequences of length 2™ — 1
and approximate increase rate of that number by an
exponential form of 2

Present some interesting properties about n-tuple vector
distribution of run sequences of 2" — 1.

Future Works

Study n-tuple vector distribution of run sequences of
length 2™ for deBruijn sequences.

Develop generating method for run, span and deBruijn
sequences
36
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C%Q:O Appendix-Theorem3

Theorem 3.

The following 7 n-tuple vectors occur exactly once in any run
sequence of length 2™ — 1:

a0,_,b and al,_,b,
where a, b € {0,1}, except for the all-zero vector.

40



O Appendix: Proof of Theorem 3

00
gt | 0erun
n 0
n—1 1
n—2 » 1's run 05—2 1's run
n—3 2!

|

2 o Only one 10,,_,1
1 2n—3
zn—Z

An n-tuple vector 10,,_,1 occurs exactly once.

41



"o Appendix: Proof of Theorem 3 (cont.)§5s/

| length | Osmun

n
n-1 Only one 0,,_41
n—2 | ‘
n—3 21 , ,
1's run 0,,_1 1's run
n—4 \ )
2 2 '
1 23 Only one 10,,_4
zn—Z

Two n-tuple vector 10,,_; and 0,,_;1 occur
exactly once.

42
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n
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Q
n
-
-
>

2n—4

[\ .

Only one 01,,_,0
1 zn—3

zn—Z

An n-tuple vector 01,,_,0 occurs exactly once.

43



.: Appendix: Proof of Theorem 3 (cont.)

n
n-1 » Only olne 1, 40
n—2 20
n—3 21 OIS run 1n OIS un

N

- . ' |
2
1 on-3 %e 01,4

2n? Only one 1,

Three n-tuple vector 1,,_,0, 01,,_4, and 1,,
occur exactly once.

44



= Appendix: Theorem 4
o6

The average number of occurrences of the following n-tuple

vectors in all the run sequence of length 2™ — 1 isequalto 1 :
a0,1,_»,_b and aly0,_,_.b,

where a,b € {0,1}and k = 0,1, ...,n — 2, except for the all-

zero vector.

45
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Appendix: Proof of Theorem 4

..
The run sequence
1st 212 th
/ Forl1 <xy<n-2 \
m Y
n 1 # of run sequences such that
n—1 0 1 k-th 0’s run is 0, and
n-— 20 20
No matter 2n—2—x 2n—2 —2
P2 No matter T 211—3 2n—2—x —1 20
2 on-—4 211—4 X
1 2n—3 2n—3 \ /
A 4



Appendlx Proof of Theorem 4(cont.) {5}

The run sequence

1st

-]

k-th

is (2™2

X

\_

— 1) times

- (2"—3

/(nce k is possible for IA

2,3,...,2" 2 # of occurrences of
10,1,0 in all the run sesquences

Zn—Z
Zn—Z—x

—1 )
-1,..,2% 1| |7 (Zn—B

pes

AN

* 10's run | 1's run

212 th

/Forle,ySn—Z, \

# of run sequences such that
k-th 0’s runis 0, and

2n72 — 2
2n—2—x

—1, ...,20)

%

47



.: Appendix: Proof of Theorem 4(cont.) }

Forl <x,y<n-—2,

27’1—2 —1 271—2 —1
Teey) = (2"-3 L2027 g 20 1) 8 (2"—3 202y 20 1)
2n2 1 2n2 1
fn=1y)= (2"—3 z°> 8 <2"—3 20727 1 20 1)

271—2 —1 271—2 —1
Txn) = (2"—3 L, 2m2x 20 1) % (2"—3 20)

on-2 _q )2

T(Tl o 1,71) = (2n—3 20

X T(a,b): The number of occurrences of 10,10

48



.: Appendix: Proof of Theorem 4(cont.) )

We prove only two cases for 2 <k <n —2:
Case 1: the n-tuple vector 0,1,,_;
Case 2: the n-tuple vector 10,_,1,_;_10

49



.: Appendix: Proof of Theorem 4(cont.)

Case 1: the n-tuple vector 0,1,,_x

The n-tuple vector 0;1,,_ can be a part of 10,.1,0 for k <
x<n—land n—k<y<n-Z2ory=n.

10,1,0

50



.: Appendix: Proof of Theorem 4(cont.) )

Case 1: the n-tuple vector 0,1,,_x

The n-tuple vector 0;1,,_ can be a part of 10,1,0 for k <
x<n—land n—k<y<n-—2ory=n.

Therefore the total number of occurrences of 0,1,,_; in all
cyclically distinct run sequences of length 2™ — 1 is equal to

n-—1 n

T(x,y).
=k y=n-k

=

X T(a,b): The number of occurrences of 10,1,;0

51



.: Appendix: Proof of Theorem 4(cont.) }

Case 1: the n-tuple vector 0,1,,_x

X T(a,b): The number of occurrences of 10,1,;0
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.: Appendix: Proof of Theorem 4(cont.)

Case 2: the n-tuple vector 104_41,,_x_10

The total number of occurrences of 104_11,,_;,_10 s
equal to

n-2 _ n-2 _
T(k—l,n—k—1)=( 2 1 2 1 )

gn-3  om-1-k _1 20 1) % (2"—3, L2k=1_1 . 201
2

_Zn—l—k Zk—l Zn_z 2_ 1 zn_z _l
~ gn-—2 pn-2\pn-3 20 1) T on-2\pn-3 ~90q) T '

X T(a,b): The number of occurrences of 10,1,;0

53



