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MacDonald Codes

For (𝟐𝒌 − 𝟏, 𝒌) Simplex code:

• 𝑆𝑘 : generator matrix

• Initialize 𝑆1 = (1), and then

𝑆𝑘 =
𝑆𝑘−1 𝟎𝑘−1

𝑇 𝑆𝑘−1
𝟎2𝑘−1−1 1 𝟏2𝑘−1−1

* 𝟎𝑛 and 𝟏𝑛 be all-zero and all one row vector of length 𝑛.

puncturing

Simplex Code

MacDonald Code



MacDonald Codes

puncturing

Simplex Code

MacDonald Code

* 𝟎𝑛 and 𝟏𝑛 be all-zero and all one row vector of length 𝑛.

deleting the first 𝟐𝒍 − 𝟏
columns (1 ≤ 𝑙 ≤ 𝑘 − 1)

𝐺𝑘 𝑙 =
𝐵 𝟎𝑘−1

𝑇 𝐴 𝐵

𝟎2𝑘−1−2𝑙 1 𝟏2𝑙−1 𝟏2𝑘−1−2𝑙

𝑆𝑘 =
𝑆𝑘−1 𝟎𝑘−1

𝑇 𝑆𝑘−1
𝟎2𝑘−1−1 1 𝟏2𝑘−1−1



MacDonald Codes

puncturing

Simplex Code

MacDonald Code

* 𝟎𝑛 and 𝟏𝑛 be all-zero and all one row vector of length 𝑛.

The (𝟐𝒌 − 𝟐𝒍, 𝒌 ) MacDonald code 
𝑴𝒌(𝒍):

𝐺𝑘 𝑙 =
𝐵 𝟎𝑘−1

𝑇 𝐴 𝐵

𝟎2𝑘−1−2𝑙 1 𝟏2𝑙−1 𝟏2𝑘−1−2𝑙



Locality

• For an [𝑛, 𝑘] code 𝐶:

⋯ ⋯1

𝒓

2 𝑒 𝑛

𝑒

coded symbol:

 Symbol locality:
the smallest number of symbols needed to repair
the failed symbol.

 𝒏, 𝒌, 𝒓 𝒂 ( 𝒏, 𝒌, 𝒓 𝒊) code 𝑪:
All coded (information) symbol has the locality at
most 𝑟.



Locality

• For an 𝑛, 𝑘, 𝑟 𝑎 code 𝐶:

⋯ ⋯1

𝒓

2 𝑒 𝑛

𝑒

coded symbol:

Let 𝒖 be the nonzero information vector.

𝑐𝑒 = 𝑐𝑖1 + 𝑐𝑖2 +⋯+ 𝑐𝑖𝑟
⇕

𝒖 ∙ 𝑔𝑒 = 𝒖 ∙ (𝑔𝑖1 + 𝑔𝑖2 +⋯+ 𝑔𝑖𝑟)

* 𝑔𝑗 , 1 ≤ 𝑗 ≤ 𝑛, is the 𝑗𝑡ℎ column of the generator matrix of 𝐶.

Linear combination of 𝒈𝒋



Locality

Lemma 1 [1]:

The locality of the MacDonald code 𝑀𝑘(𝑙) is

𝑟 = ቊ
2, 𝑙 < 𝑘 − 1
3, 𝑙 = 𝑘 − 1

[1]. Q. Fu, R. Li, L. Guo, and L. Lv, ”Locality of optimal binary codes,” Finite Fields and Their
Applications, vol. 48, pp. 371-394, 2017.

• When 𝑙 < 𝑘 − 1,

𝐺𝑘 𝑙 =
𝐵 𝟎𝑘−1

𝑇 𝐴 𝐵

𝟎2𝑘−1−2𝑙 1 𝟏2𝑙−1 𝟏2𝑘−1−2𝑙

• When 𝑙 = 𝑘 − 1,

𝐺𝑘 𝑙 =
𝟎𝑘−1
𝑇 𝐴 𝐵
1 𝟏2𝑙−1 𝟏2𝑘−1−2𝑙



Erasures

• Single erasure

 Locality 𝑟

• Multiple erasures

 Cooperative locality 𝑟ℎ
 Availability 𝑡



Cooperative Locality

 Cooperative locality 𝒓𝒉:

 The smallest number of symbols needed to
repair 𝒉 ≥ 𝟏 erased symbols.

 𝑟ℎ ≤ 𝑟1 ∙ ℎ

Generalize the locality 𝑟 ≜ r1



Cooperative Locality

All coded (information) symbol has the locality at most 𝑟1.

• Code locality:



Cooperative Locality

⋯ ⋯1

3

2 𝑛

𝑒1

coded symbol:

Eg: (𝐶 has the cooperative locality 𝑟2 = 4 < 6）

𝑒2

3

𝑒1 𝑒2⋯

All coded (information) symbol has the locality at most 𝑟1.

𝒓𝒉Any 𝒉 coded (information) symbol

• Code locality:

cooperative



Cooperative Locality

Theorem 1:

The cooperative locality 𝑟2 of the MacDonald code
𝑀𝑘(𝑙) is

𝑟2 = ቊ
3 (< 4 = 2𝑟1), 𝑙 < 𝑘 − 1
4 (< 6 = 2𝑟1), 𝑙 = 𝑘 − 1



Cooperative Locality

Proof: 

Let 𝑒𝑖 and 𝑒𝑗 be two erased symbols.

1) When 𝑙 < 𝑘 − 1,

Case 1:

𝐺𝑘 𝑙 =
𝐵 𝟎𝑘−1

𝑇 𝐴 𝐵

𝟎2𝑘−1−2𝑙 1 𝟏2𝑙−1 𝟏2𝑘−1−2𝑙

𝑔𝑖 = (𝒖 0)

𝑔𝑗 = (𝒗 0)



Cooperative Locality

Proof: 

Let 𝑒𝑖 and 𝑒𝑗 be two erased symbols.

1) When 𝑙 < 𝑘 − 1,

Case 1:

𝐺𝑘 𝑙 =
𝐵 𝟎𝑘−1

𝑇 𝐴 𝐵

𝟎2𝑘−1−2𝑙 1 𝟏2𝑙−1 𝟏2𝑘−1−2𝑙

𝑔𝑖 = (𝒖 0)

𝑔𝑗 = (𝒗 0)
(𝒘 1)



Cooperative Locality

Proof: 

Let 𝑒𝑖 and 𝑒𝑗 be two erased symbols.

1) When 𝑙 < 𝑘 − 1,

Case 1:

𝑔𝑖 = (𝒖 0)

𝑔𝑗 = (𝒗 0)

𝐺𝑘 𝑙 =
𝐵 𝟎𝑘−1

𝑇 𝐴 𝐵

𝟎2𝑘−1−2𝑙 1 𝟏2𝑙−1 𝟏2𝑘−1−2𝑙

(𝒘 1)

(𝒖 + 𝒘 1)

(𝒗 + 𝒘 1)

∴ 𝒓𝟐 = 𝟑



Cooperative Locality

Proof: 

Let 𝑒𝑖 and 𝑒𝑗 be two erased symbols.

1) When 𝑙 < 𝑘 − 1,

Case 2:

𝑔𝑖 = (𝒖 1)

𝑔𝑗 = (𝒗 1)

𝐺𝑘 𝑙 =
𝐵 𝟎𝑘−1

𝑇 𝐴 𝐵

𝟎2𝑘−1−2𝑙 1 𝟏2𝑙−1 𝟏2𝑘−1−2𝑙



Cooperative Locality

Proof: 

Let 𝑒𝑖 and 𝑒𝑗 be two erased symbols.

1) When 𝑙 < 𝑘 − 1,

Case 2:

𝑔𝑖 = (𝒖 1)

𝑔𝑗 = (𝒗 1)

𝐺𝑘 𝑙 =
𝐵 𝟎𝑘−1

𝑇 𝐴 𝐵

𝟎2𝑘−1−2𝑙 1 𝟏2𝑙−1 𝟏2𝑘−1−2𝑙

(𝒘 0)
and 𝒘 ≠ 𝒖 + 𝒗



Cooperative Locality

Proof: 

Let 𝑒𝑖 and 𝑒𝑗 be two erased symbols.

1) When 𝑙 < 𝑘 − 1,

Case 2:

𝑔𝑖 = (𝒖 1)

𝑔𝑗 = (𝒗 1)

𝐺𝑘 𝑙 =
𝐵 𝟎𝑘−1

𝑇 𝐴 𝐵

𝟎2𝑘−1−2𝑙 1 𝟏2𝑙−1 𝟏2𝑘−1−2𝑙

(𝒘 0)

(𝒖 + 𝒘 1)

(𝒗 + 𝒘 1)

∴ 𝒓𝟐 = 𝟑



Cooperative Locality

Proof: 

Let 𝑒𝑖 and 𝑒𝑗 be two erased symbols.

1) When 𝑙 < 𝑘 − 1,

Case 3:

𝑔𝑖 = (𝒖 0) 𝑔𝑗 = (𝒗 1)

𝐺𝑘 𝑙 =
𝐵 𝟎𝑘−1

𝑇 𝐴 𝐵

𝟎2𝑘−1−2𝑙 1 𝟏2𝑙−1 𝟏2𝑘−1−2𝑙



Cooperative Locality

Proof: 

Let 𝑒𝑖 and 𝑒𝑗 be two erased symbols.

1) When 𝑙 < 𝑘 − 1,

Case 3:

𝑔𝑖 = (𝒖 0) 𝑔𝑗 = (𝒗 1)

𝐺𝑘 𝑙 =
𝐵 𝟎𝑘−1

𝑇 𝐴 𝐵

𝟎2𝑘−1−2𝑙 1 𝟏2𝑙−1 𝟏2𝑘−1−2𝑙

(𝒗 + 𝒘 0)



Cooperative Locality

Proof: 

Let 𝑒𝑖 and 𝑒𝑗 be two erased symbols.

1) When 𝑙 < 𝑘 − 1,

Case 3:

𝑔𝑖 = (𝒖 0) 𝑔𝑗 = (𝒗 1)

𝐺𝑘 𝑙 =
𝐵 𝟎𝑘−1

𝑇 𝐴 𝐵

𝟎2𝑘−1−2𝑙 1 𝟏2𝑙−1 𝟏2𝑘−1−2𝑙

(𝒘 1)(𝒖 + 𝒘 1) (𝒗 + 𝒘 0)

∴ 𝒓𝟐 = 𝟑



Cooperative Locality

Proof: 

Let 𝑒𝑖 and 𝑒𝑗 be two erased symbols.

2) When 𝑙 = 𝑘 − 1,

𝑔𝑖 = (𝒖 1) 𝑔𝑗 = (𝒗 1)

𝐺𝑘 𝑙 =
𝟎𝑘−1
𝑇 𝐴 𝐵
1 𝟏2𝑙−1 𝟏2𝑘−1−2𝑙



Cooperative Locality

Proof: 

Let 𝑒𝑖 and 𝑒𝑗 be two erased symbols.

2) When 𝑙 = 𝑘 − 1,

𝑔𝑖 = (𝒖 1) 𝑔𝑗 = (𝒗 1)

𝐺𝑘 𝑙 =
𝟎𝑘−1
𝑇 𝐴 𝐵
1 𝟏2𝑙−1 𝟏2𝑘−1−2𝑙

(𝒂 1)

(𝒃 1)

and 𝒂 ≠ 𝒃 ≠ 𝒖, 𝒗
𝒂 + 𝒃 ≠ 𝒖 + 𝒗



Cooperative Locality

Proof: 

Let 𝑒𝑖 and 𝑒𝑗 be two erased symbols.

2) When 𝑙 = 𝑘 − 1,

𝑔𝑖 = (𝒖 1) 𝑔𝑗 = (𝒗 1)

∴ 𝒓𝟐 = 𝟒

𝐺𝑘 𝑙 =
𝟎𝑘−1
𝑇 𝐴 𝐵
1 𝟏2𝑙−1 𝟏2𝑘−1−2𝑙

(𝒂 1)

(𝒖 + 𝒂 + 𝒃 1)

(𝒗 + 𝒂 + 𝒃 1)

(𝒃 1)



Availability

 Availability 𝒕 of symbol 𝒄𝒊:

 The largest number of the disjoint repair sets.

 𝑅𝜏 𝑖 ≤ 𝑟1, 1 ≤ 𝜏 ≤ 𝑡

 Code availability:

 All coded (information) symbol has at least 𝑡
disjoint repair set at most 𝑟1.

 𝑟1, 𝑡 𝑎 / 𝑟1, 𝑡 𝑖

⋯ ⋯1 2 𝑒 𝑛

𝒓𝟏

𝑒

coded symbol:

𝒓𝟏

𝑒⋯



Availability

Theorem 2:

The MacDonald code 𝑀𝑘(𝑙) , 𝑘 ≥ 3 , are LRCs with
all-symbol availability

𝑟1, 𝑡 𝑎 = 2, 2𝑘−1 − 2𝑙
𝑎
, 𝑙 < 𝑘 − 1

𝑟1, 𝑡 𝑎 = 3,
2𝑘−1 − 1

3
𝑎

, 𝑙 = 𝑘 − 1, 𝑘 𝑖𝑠 𝑜𝑑𝑑

Lemma 2



Availability

Proof: 

1) 𝑙 < 𝑘 − 1:

[2𝑘 − 1, 𝑘] Simplex code:

𝑟1, 𝑡 𝑎 = 2, 2𝑘−1 − 1
𝑎

[2]

For any symbol 𝑠𝑖 ,

= 𝑖 ∪ 𝑅1 𝑖 ∪ ⋯∪ 𝑅2𝑘−1−1 𝑖

= 1 + 2 × 2𝑘−1 − 1 = 2𝑘 − 1

[2]. M. Kuijper and D, Napp, ”Erasure codes with simplex locality,” [Online.]
Available:http://arxiv.org/abs/1403.2779

The repair sets cover all other symbols.



Availability

Proof: 

1) 𝑙 < 𝑘 − 1:

𝑆𝑘 =
𝑆𝑘−1 𝟎𝑘−1

𝑇 𝑆𝑘−1
𝟎2𝑘−1−1 1 𝟏2𝑘−1−1

=
𝐴

𝟎2𝑙−1

𝐵 𝟎𝑘−1
𝑇 𝐴 𝐵

𝟎2𝑘−1−2𝑙 1 𝟏2𝑙−1 𝟏2𝑘−1−2𝑙

the last 𝑘 − 𝑙 elements 
of the column are 0

the last 𝑘 − 𝑙 elements of the 
column have at least one 1



Availability

Proof: 

1) 𝑙 < 𝑘 − 1:

𝑆𝑘 =
𝑆𝑘−1 𝟎𝑘−1

𝑇 𝑆𝑘−1
𝟎2𝑘−1−1 1 𝟏2𝑘−1−1

=
𝐴

𝟎2𝑙−1

𝐵 𝟎𝑘−1
𝑇 𝐴 𝐵

𝟎2𝑘−1−2𝑙 1 𝟏2𝑙−1 𝟏2𝑘−1−2𝑙

the last 𝑘 − 𝑙 elements 
of the column are 0

the last 𝑘 − 𝑙 elements of the 
column have at least one 1

each repair set of the symbol contains 
at most one element that belongs to 
[2𝑙 − 1].



Availability

Proof: 

1) 𝑙 < 𝑘 − 1:

𝑆𝑘 =
𝑆𝑘−1 𝟎𝑘−1

𝑇 𝑆𝑘−1
𝟎2𝑘−1−1 1 𝟏2𝑘−1−1

=
𝐴

𝟎2𝑙−1

𝐵 𝟎𝑘−1
𝑇 𝐴 𝐵

𝟎2𝑘−1−2𝑙 1 𝟏2𝑙−1 𝟏2𝑘−1−2𝑙
= 𝑮𝒌(𝒍)

each symbol has 2𝑘−1 − 2𝑙 repair sets



Availability

Proof: 

2) 𝑙 = 𝑘 − 1 and 𝑘 is odd integer:

All the symbol have the same number of disjoint 
repair sets.

The availability of code

⇓

The availability of the first symbol of 𝑀𝑘(𝑘 − 1)



Proof: 

2) 𝑙 = 𝑘 − 1 and 𝑘 is odd integer:

Base case:

When 𝑘 = 3, the generator matrix of 𝑀3(2) is

𝐺3 2 =
0 1 0
0 0 1
1 1 1

1
1
1

Obviously, (r1, 𝑡) = (3,1 =
23−1−1

3
)

Availability



Proof:

2) 𝑙 = 𝑘 − 1 and 𝑘 is odd integer:

Induction step:

Assume 𝑀𝑚(𝑚 − 1) has the availability 𝑟1, 𝑡 𝑎 =

3, ℎ =
2𝑚−1−1

3 𝑎
for a given odd 𝑚.

𝑔1 = 𝑔𝛼𝑖 + 𝑔𝛽𝑖 + 𝑔𝛾𝑖 , where 1 ≤ 𝑖 ≤ ℎ

Availability



Proof:

2) 𝑙 = 𝑘 − 1 and 𝑘 is odd integer:

Induction step:

Assume 𝑀𝑚(𝑚 − 1) has the availability 𝑟1, 𝑡 𝑎 =

3, ℎ =
2𝑚−1−1

3 𝑎
for a given odd 𝑚.

𝑔1 = 𝑔𝛼𝑖 + 𝑔𝛽𝑖 + 𝑔𝛾𝑖 , where 1 ≤ 𝑖 ≤ ℎ

Availability



Proof:

2) 𝑙 = 𝑘 − 1 and 𝑘 is odd integer:

Induction step:

0
0
𝑔1

=

0
0
𝑔𝛼𝑖

+

0
0
𝑔𝛽𝑖

+

0
0
𝑔𝛾𝑖

=

0
1
𝑔𝛼𝑖

+

1
0
𝑔𝛽𝑖

+

1
1
𝑔𝛾𝑖

=

1
0
𝑔𝛼𝑖

+

1
1
𝑔𝛽𝑖

+

0
1
𝑔𝛾𝑖

=

1
1
𝑔𝛼𝑖

+

0
1
𝑔𝛽𝑖

+

1
0
𝑔𝛾𝑖

Availability



Proof:

2) 𝑙 = 𝑘 − 1 and 𝑘 is odd integer:

Induction step:

0
0
𝑔1

=
0
1
𝑔1

+
1
0
𝑔1

+
1
1
𝑔1

0
0
𝑔1

has 4ℎ + 1 disjoint linear combination.

3 × 4ℎ + 1 = 2𝑚+1 − 1⟹ No more repair sets

4ℎ + 1 = 4 ×
2𝑚−1 − 1

3
+ 1 =

2𝑚+1 − 1

3

Availability



Optimal

Theorem 3:

The MacDonald code 𝑀𝑘(𝑙) are both the optimal
LRCs with all-symbol availability and the optimal
LRCs with information availability only when 𝑙 ≤ 𝑘 −
1, 𝑘 = 3 and 𝑙 = 3, 𝑘 = 4.

All-symbol availability [3]:

𝑑 ≤ 𝑛 −෍

𝑖=0

𝑡
𝑘 − 1

𝑟1
𝑖

[3]. I. Tamo and A. Barg, ”Bounds on locally recoverable codes with multiple recovering sets,” in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), pp. 691–695, Jun./Jul. 2014.
[4]. A. Wang and Z. Zhang, ”Repair locality with multiple erasure tolerance,” IEEE Trans. Inf.
Theory, vol. 60, no. 11, pp. 6979–6987, Nov. 2014.

Information availability [4]:

𝑑 ≤ 𝑛 − 𝑘 + 2 −
𝑘 − 1 𝑡 + 1

𝑟1 − 1 𝑡 + 1



Conclusion

In this paper,

• Calculate the cooperative locality 𝑟2 and the availability 𝑡 of

the MacDonald codes.

• Show its optimization when 𝑘 = 3 and 4.


