

Zero-Correlation-Zone Sonar Sequences

2023 IEEE International Symposium on Information Theory 2023. 06. 27

Xiaoxiang Jin, Sangwon Chae, Hyunwoo Cho, Hyojeong Choi, Gangsan Kim, and **Hong-Yeop Song**

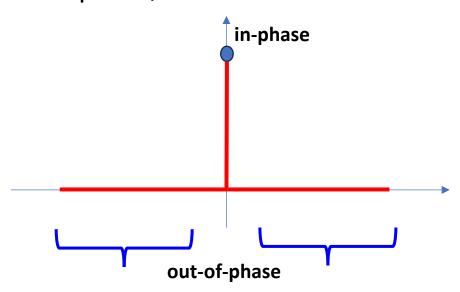
Yonsei Univ., Seoul KOREA

Binary sequences with PERFECT autocorrelation

• PERFECT autocorrelation:

$$C(\tau) = n$$
 when $\tau = 0$ (in-phase)

$$C(\tau) = 0$$
 when $\tau \neq 0$ (out-of-phase)



We know that

it is impossible for the length > 4

Binary sequences with ideal autocorrelation

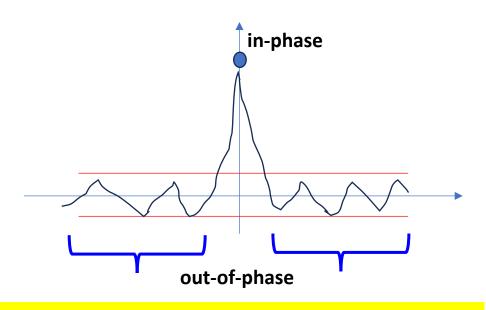
• GOOD (IDEAL) autocorrelation:

$$C(\tau) = n$$
 when $\tau = 0$

$$|C(\tau)| \le 1$$
 when $\tau \ne 0$

Examples

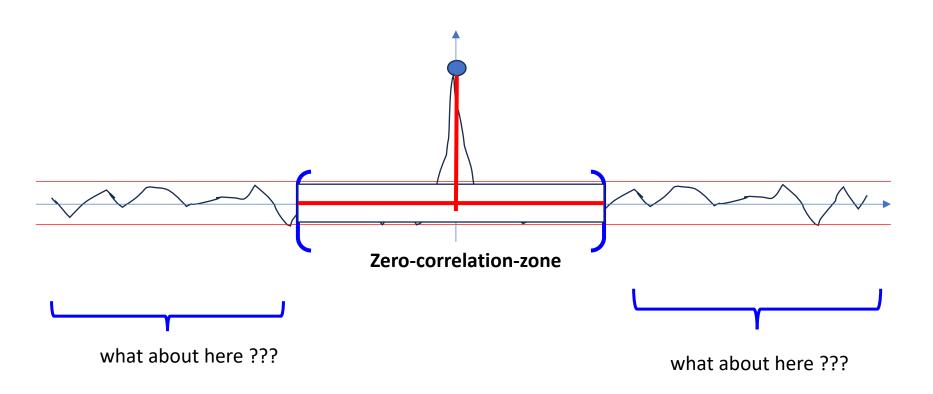
- ✓ m-sequences
- ✓ quadratic residue sequences
- √ and many others



sidelobe is not PERFECT in general

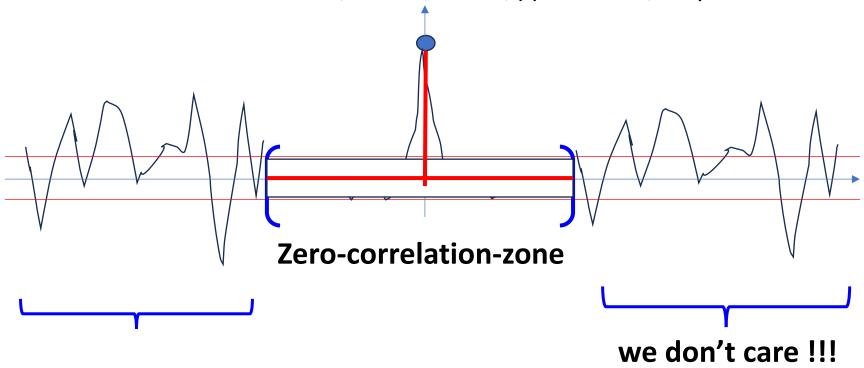
Binary sequences with Zero-correlation-zone (ZCZ)

P. Z. Fan, et al, "Class of binary sequences with zero correlation zone," Electronics Letters, vol. 35, no. 10, pp. 777-779, May. 1999.



Typical binary sequences with ZCZ

P. Z. Fan, et al, "Class of binary sequences with zero correlation zone," **Electronics Letters**, vol. 35, no. 10, pp. 777-779, May. 1999.

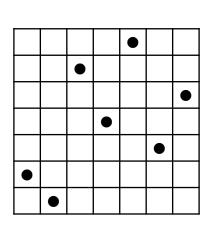


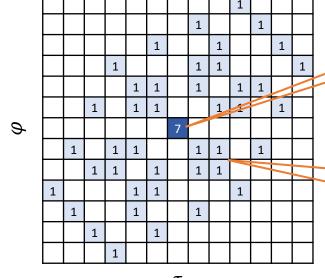
Two-dimensional versions

SONAR sequences

- Two-dimensional synchronizing patterns of dots and blanks with minimal ambiguity.
- Active sonar systems (and also for pulse compression radar)
 - -- improve target detection performance.

S. W. Golomb and **H. Taylor**, "Two-Dimensional Synchronization Patterns for Minimum Ambiguity," **IEEE Transactions on Information Theory**, vol. 28, no. 4, pp. 600–604, Jul. 1982.





C(0,0)=n

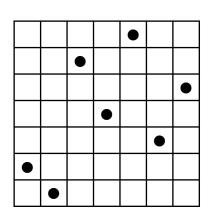
two-dim ideal autocorrelation

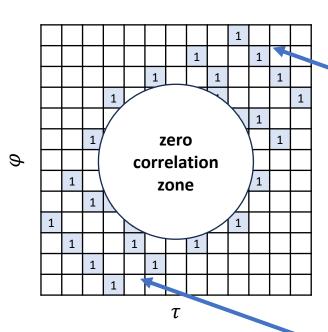
 $\mathcal{C}(\varphi\neq 0,\tau\neq 0)\leq 1$

Two-dimensional versions

main contribution of this talk SONAR sequences with ZCZ

what about the other area outside ZCZ ???

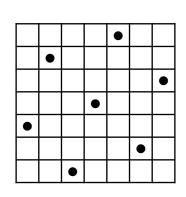


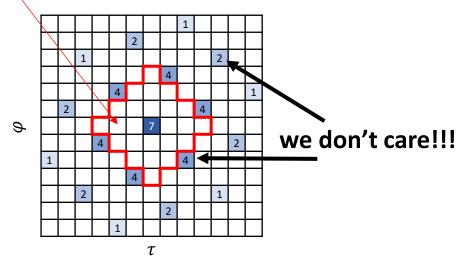


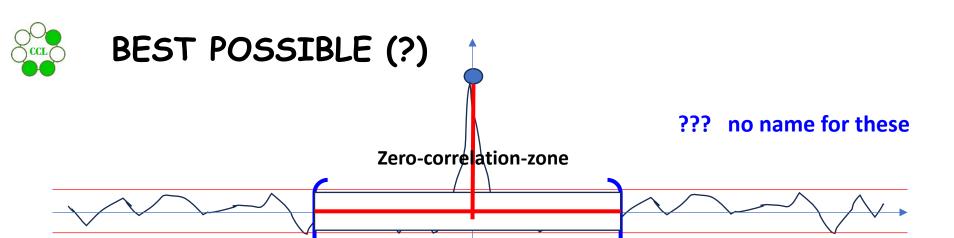
Two-dimensional versions

Typical SONAR sequences with ZCZ

zero correlation zone

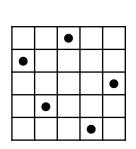


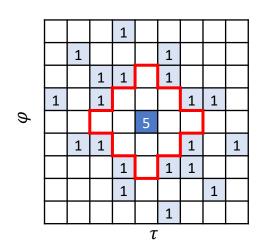




Binary sequences with a large ZCZ

still satisfying the ideal autocorrelation property outside ZCZ





ZCZ-DD sonar sequences

ZCZ sonar sequences

still satisfying the sonar sequence property outside ZCZ

Sonar sequences

• A function $f:\{1,2,...,n\} \rightarrow \{1,2,...,m\}$ has the distinct difference (DD) property if

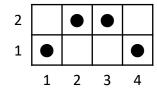
f(u+h)-f(u), for all possible h and u, are all distinct.

- An (m, n) sonar sequence is a function $f: \{1, 2, ..., n\} \rightarrow \{1, 2, ..., m\}$ with the DD property.
- An (m, n) sonar sequence is optimal if n is the largest possible for given m.

Example

An optimal (2,4) sonar sequence

 2×4 sonar array

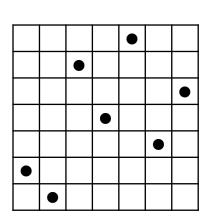


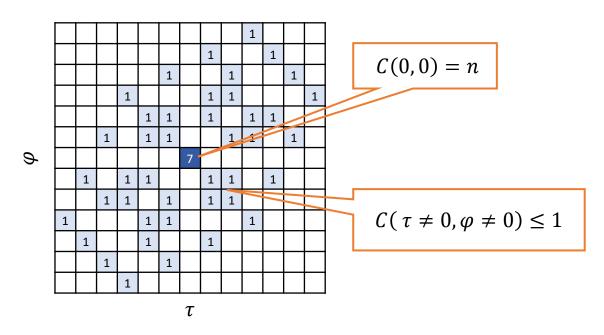
[11] S. W. Golomb and H. Taylor, "Two-Dimensional Synchronization Patterns for Minimum Ambiguity," IEEE Trans actions on Information Theory, vol. 28, no. 4, pp. 600–604, Jul. 1982.

Correlation of sonar sequence [12]

• The discrete non-periodic autocorrelation $C(\tau, \varphi)$ is the number of coincidences between dots in a sonar array A(i,j) and its shift $A(i+\tau,j+\varphi)$.

Example



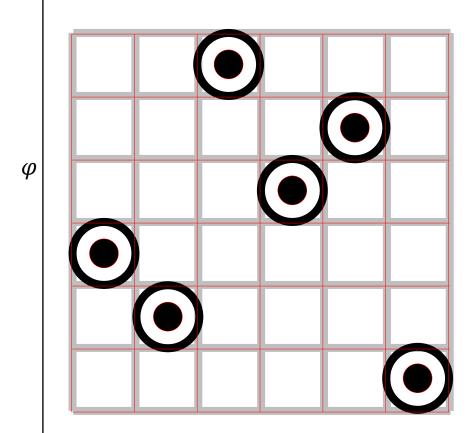


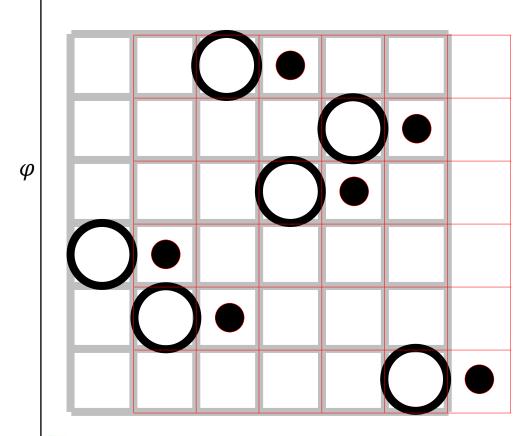
[12] S. W. Golomb and H. Taylor, "Constructions and properties of Costas arrays," Proceedings of the IEEE, vol. 72, no. 9, pp. 1143–1163, Sep. 1984.

Auticorrelation $C(\tau, \varphi)$

a (6,6) sonar array

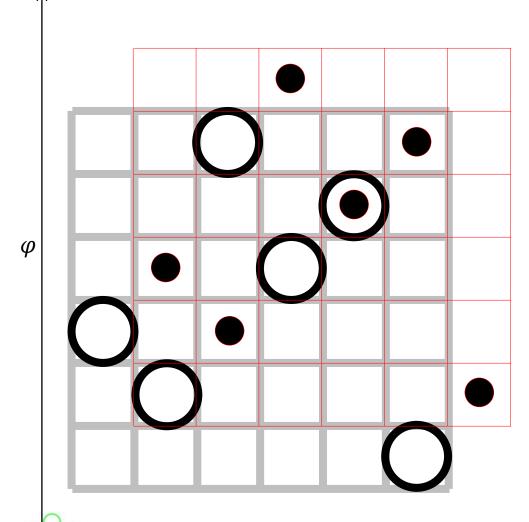
f_6						
f_5						
f_4						
f_3						
f_2						
f_{I}						
	t_1	t_2	t_3	t_4	t_5	t_6



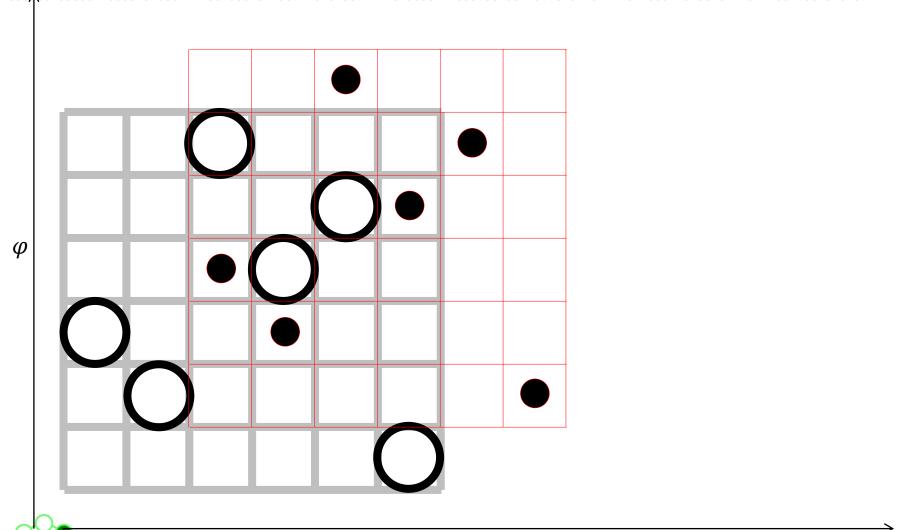


τ

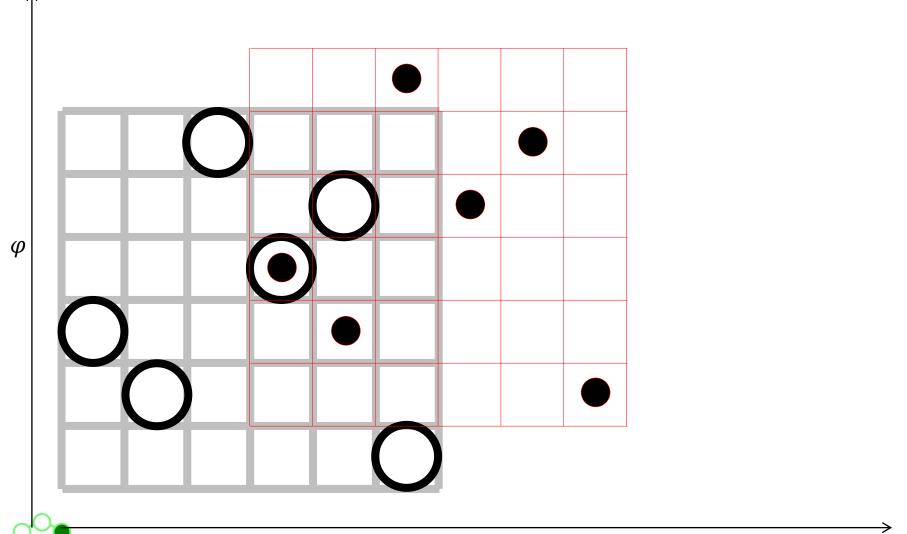
Autocorrelation at $(\tau=1, \varphi=1)$



Autocorrelation at $(\tau=2, \varphi=1)$



Autocorrelation at $(\tau=3, \varphi=1)$



Full (non-periodic) Autocorrelation Function

	_											
1000000100000110000101000			1									0111011100110010101010111111
					1		1					
^				1				1	1			
(0	1				1			1		1		
arphi		1		1	1		(1)		(1))		
						-6						
			1		1		1	1		1		
τ =0, φ =0		1		1			1				1	
			1	1				1				
					1		1					
~~~									1			





## Main Contribution of this talk



- Definition of ZCZ sonar sequences and ZCZ-DD sonar sequences
- Theorem 1 on the upper bound on r for (m, n, r) ZCZ Sonar sequences
- Theorem 2 on the construction of (m, n, r) ZCZ Sonar sequences for  $r \ge 3$  with  $m = r^2 1$  and n > 1
  - Theorem 5 (corollary) on the range of r for (m, n = m, r) ZCZ Sonar sequences
- (new) Definition of optimal (m,n,r) ZCZ sonar sequence
- Theorem 3 on the construction of (q-4,q-4,2) ZCZ-DD sonar sequence from the Lempel construction
- Theorem 4 on the construction of (p, p-1, 2) ZCZ-DD sonar sequence from the Welch construction



## ZCZ sonar sequences

#### **Definition (ZCZ sonar sequences)**

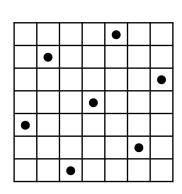
An (m, n, r) ZCZ sonar sequence is a function  $f: \{1, 2, ..., n\} \rightarrow \{1, 2, ..., m\}$  such that its autocorrelation satisfies

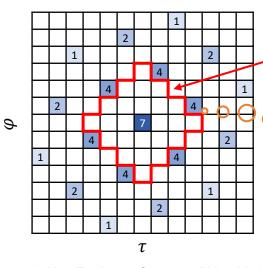
$$C(\varphi, \tau) = 0$$
 for all  $(\tau, \varphi)$  with  $|\tau| + |\varphi| \le r$  except for  $(0, 0)$ .

where r is the zone radius in the **Manhattan metric**.

#### Example

A(7,7,3) ZCZ sonar array and its autocorrelation.





**ZCZ = Manhattan circle of radius 3** 

May not have DD property

[13] E. F. Kraus, "Taxicab Geometry: An Adventure in Non-Euclidean Geometry," New York, USA: Dover Publications, 1986.



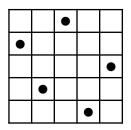
## ZCZ-DD sonar sequences

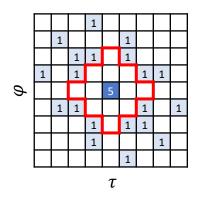
#### **Definition (ZCZ-DD sonar sequences)**

An (m, n, r) ZCZ-DD sonar sequence is an (m, n, r) ZCZ sonar sequence with DD property.

#### Example

A (5,5,2) ZCZ-DD sonar array and its autocorrelation.



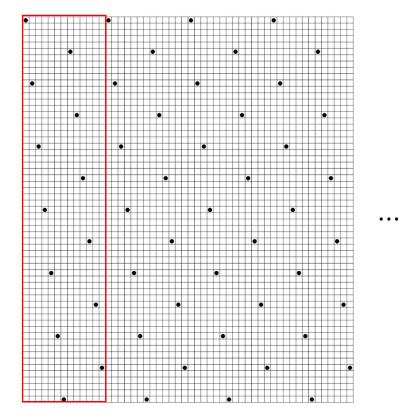


DD property guarantees that all out-of-phase values are at most 1

- A ZCZ-DD sonar sequence is a sonar sequence.
- A ZCZ-DD sonar sequence is always a ZCZ sonar sequence, but not conversely.
- A ZCZ sonar sequence may not have DD property.



(61,52,10) ZCZ Sonar sequence by computer search



- It has a **periodic structure** of a period of 13 columns repeating 4 times.
- Essentially, it gives a family of (61, n, 10) ZCZ sonar sequences for any positive integer n.
- Optimal ZCZ sequence cannot be determined !!!



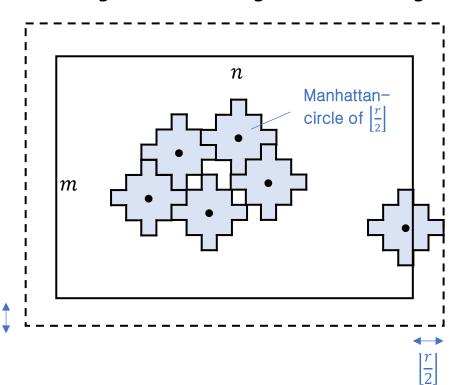
### Theorem 1

#### **Theorem 1**

For an (m, n, r) ZCZ sonar sequence with  $n \ge m \ge 3$ ,

$$r \le \left[ \frac{m + \sqrt{m^2 + 2n(n-2)(m-1)}}{n-2} \right] + 1.$$

Analogous to Hamming bound in Coding Theory.



The size of Manhattan-circle of radius  $\left|\frac{r}{2}\right|$ :

$$\left| s\left( \left\lfloor \frac{r}{2} \right\rfloor \right) \right| = 1 + 2 \left\lfloor \frac{r}{2} \right\rfloor + 2 \left\lfloor \frac{r}{2} \right\rfloor^2.$$

n times this area cannot be larger than the area given by

$$n + \left\lfloor \frac{r}{2} \right\rfloor$$
 times  $m + \left\lfloor \frac{r}{2} \right\rfloor$ 



## Some upper bounds on r from Theorem 1

Upp	per	n																	
bou	und	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	3	8	5	4	4	4	3	3	3	3	3	3	3	3	3	3	3	3	3
	4	-	7 2	5	5	4	4	4	4	4	4	4	4	3	3	3	3	3	3
	5			6 2	5	5	5	5	4	4	4	4	4	4	4	4	4	4	4
	6			-	6 2	6	5	5	5	5	5	5	4	4	4	4	4	4	4
	7				-	6	6	6	5	5	5	5	5	5	5	5	5	5	5
	8					,	6	6	6	6	5	5	5	5	5	5	5	5	5
	9							4.50	6	6	6	6	6	6	5	5	5	5	5
m	10						th	6.	7	6	6	6	6	6	6	6	6	6	6
	11							49	<b>^</b>	7 3	7	6	6	6	6	6	6	6	6
	12								Crye	94	7	7	7	7	6	6	6	6	6
	13									9/4		7	7	7	7	7	7	7	6
	14										FOU		7	7	7	7	7	7	7
	15										6 7 7 7 4 35 Out	16×		7 4	7	7	7	7	7
	16												MO	**	8	7	7	7	7

2024-09-07 title of the talk 24



## A construction of (m, n, r) ZCZ sonar sequence

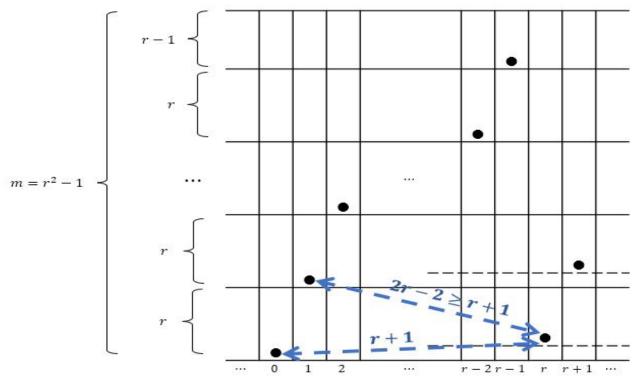
#### **Theorem 2**

For any positive integers n and  $r \ge 3$  with  $m = r^2 - 1$ ,

the function  $f: \{0, 1, ..., n-1\} \to \{0, 1, ..., m-1\}$  defined by

$$f(j) = rj \pmod{m}$$

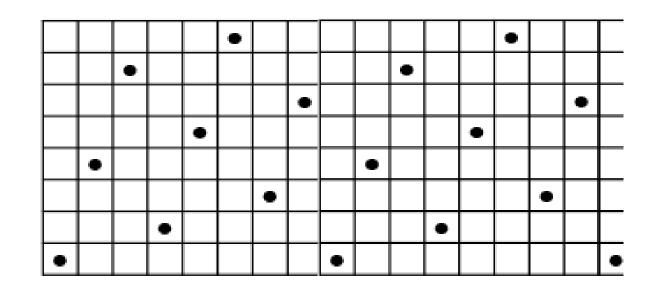
is an (m, n, r) ZCZ sonar sequence





## Example

An (8, n, 3) ZCZ sonar array.



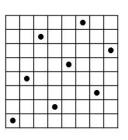
• Meaningless to talk about conventional 'optimal' (8, n, 3) ZCZ sonar sequence for the largest value n

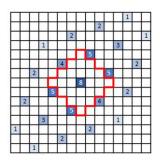
• We may define an optimal (m,n,r) ZCZ sonar sequence with the largest value of r for given m and n.



## 3 examples

#### (8,8,3) ZCZ sonar array

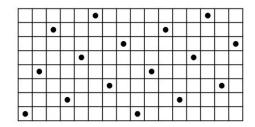


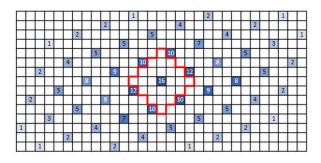


## optimal (8,8,3) ZCZ sonar sequence

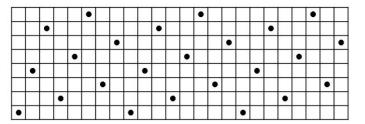
in the sense that 3 is the largest for given n=m=8

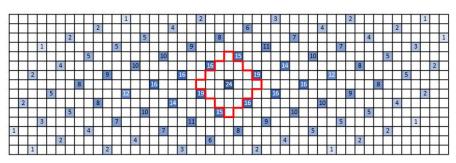
#### (8,16,3) ZCZ sonar array





#### (8,24,3) ZCZ sonar array







## An interesting sub-case: n = m.

The upper bound in Theorem 1 can be further simplified to

$$r < \left\lfloor \frac{m(1+\sqrt{2m})}{m-2} \right\rfloor + 1 \approx \left\lfloor 2 + \sqrt{2m} \right\rfloor.$$

By construction, Theorem 2 for n=m gives a lower bound.

#### **Theorem 5**

For an (m, m, r) ZCZ sonar sequence with  $m \ge r \ge 3$ , we have

$$\left[\sqrt{m+2}\right] \le r < \left\lfloor 2 + \sqrt{2m} \right\rfloor.$$

Roughly, it says

$$\sqrt{m} \lesssim r \lesssim \sqrt{2m}$$
.



# Exhaustive search for the true maximum r in (m, n = m, r) ZCZ sonar sequences

-									
	m	true max	upper bound	m	true max	upper bound	m	true max	upper bound
-	3	1	8	23	5	9	43	8	11
	4	2	7	24	5	9	44	8	11
	5	2	6	25	6	9	45	8	11
	6	2	6	26	6	9	46	8	11
	7	3	6	27	6	9	47	8	11
	8	3	7	28	6	9	48	8	12
. [ )	9	3	7	29	6	9	49	9	12
	10	3	7	30	6	10	50	9	12
,	11	3	7	31	7	10	51	9	12
	12	4	7	32	7	10	52	9	12
	13	4	7	33	7	10	53	9	12
	14	4	7	34	7	10	54	9	12
	15	4	7	35	7	10	55	9	12
	16	4	8	36	7	10	56	9	12
	17	5	8	37	7	10	57	9	12
	18	5	8	38	7	10	58	9	12
	19	5	8	39	7	11	59	9	13
	20	5	8	40	8	11	60	10	13

Does not exist a (8,8,4) ZCZ sonar sequence.

quite GOOD as m increases!



### Some open problems

1) Improve the upper bound on r for (m, n, r) **ZCZ sonar** sequences in Theorem 1.

### For (m, n, r) ZCZ-DD sonar sequences

- 2) Find the upper bound on r for given m and n.
- 3) Find the (largest) value n for given r and m.
- 3) Find some systematic constructions for the best (large) values of r > 2.

## THE END