

Zero-Correlation-Zone Sonar Sequences

10th International Congress on Industrial and Applied Mathematics ICIAM 2023 Tokyo

Satellite Meeting
International Conference on Coding Theory and its Applications

Hong-Yeop Song School of Electrical and Electronic Engineering Yonsei Univ., Seoul KOREA

• PERFECT autocorrelation:

 $C(\tau) = n$ when $\tau = 0$ (in-phase)

 $C(\tau) = 0$ when $\tau \neq 0$ (out-of-phase)

it is impossible for the length > 4

Binary sequences with ideal autocorrelation

• GOOD (IDEAL) autocorrelation: $C(\tau) = n$ when $\tau = 0$ $|C(\tau)| \le 1$ when $\tau \ne 0$

- Examples
 - ✓ m-sequences
 - ✓ quadratic residue sequences
 - \checkmark and many others

sidelobe is not PERFECT in general

P. Z. Fan, et al, "Class of binary sequences with zero correlation zone," Electronics Letters, vol. 35, no. 10, pp. 777-779, May. 1999.

Typical binary sequences with ZCZ

P. Z. Fan, et al, "Class of binary sequences with zero correlation zone," Electronics Letters, vol. 35, no. 10, pp. 777-779, May. 1999. Zero-correlation-zone we don't care !!!

Two-dimensional versions

SONAR sequences

- Two-dimensional synchronizing patterns of dots and blanks with minimal ambiguity.
- Active sonar systems (and also for pulse compression radar)

-- improve target detection performance.

S. W. Golomb and **H. Taylor**, "Two-Dimensional Synchronization Patterns for Minimum Ambiguity," **IEEE Transactions on Information Theory**, vol. 28, no. 4, pp. 600–604, Jul. 1982.

Two-dimensional versions

main contribution of this talk SONAR sequences with ZCZ

what about the other area outside ZCZ ???

7

Two-dimensional versions

Typical SONAR sequences with ZCZ

8

•

•

•

•

Binary sequences with a large zcz

still satisfying the ideal autocorrelation property **OUTSIDE ZCZ**

0

still satisfying the sonar sequence property OUTSIDE ZCZ

Sonar sequences

• A function $f: \{1, 2, ..., n\} \rightarrow \{1, 2, ..., m\}$ has the distinct difference (DD) property if

f(u+h) - f(u), for all possible h and u, are all distinct.

- An (m, n) sonar sequence is a function $f: \{1, 2, ..., n\} \rightarrow \{1, 2, ..., m\}$ with the DD property.
- An (m, n) sonar sequence is optimal if n is the largest possible for given m.

Example

[11] S. W. Golomb and H. Taylor, "Two-Dimensional Synchronization Patterns for Minimum Ambiguity," IEEE Trans actions on Information Theory, vol. 28, no. 4, pp. 600–604, Jul. 1982.

Correlation of sonar sequence [12]

• The discrete non-periodic autocorrelation $C(\tau, \varphi)$ is the number of coincidences between dots in a sonar array A(i, j) and its shift $A(i + \tau, j + \varphi)$.

Example

[12] S. W. Golomb and H. Taylor, "Constructions and properties of Costas arrays," Proceedings of the IEEE, vol. 72, no. 9, pp. 1143–1163, Sep. 1984.

Auticorrelation $C(\tau, \varphi)$

a (6,6) sonar array

0010101011111

Autocorrelation at ($\tau=0, \varphi=0$)

Autocorrelation at (τ =1, φ =0)

Autocorrelation at (τ =1, φ =1)

Autocorrelation at (τ =2, φ =1)

φ

Autocorrelation at (τ =3, φ =1)

discrete version of ambiguity function

Full (non-periodic) Autocorrelation Function

- Definition of ZCZ sonar sequences and ZCZ-DD sonar sequences
- Theorem 1 on the upper bound on r for (m, n, r) ZCZ Sonar sequences
- Theorem 2 on the construction of (m, n, r) ZCZ Sonar sequences for $r \ge 3$ with $m = r^2 1$ and n > 1
 - Theorem 5 (corollary) on the range of r for (m, n = m, r) ZCZ Sonar sequences
- (new) Definition of optimal (m, n, r) ZCZ sonar sequence
- Theorem 3 on the construction of (q 4, q 4, r = 2) ZCZ-DD sonar sequence from the Lempel construction of Costas arrays
- Theorem 4 on the construction of (p, p 1, r = 2) ZCZ-DD sonar sequence from the Welch construction of Costas arrays

Definition (ZCZ sonar sequences)

An (m, n, r) ZCZ sonar sequence is a function $f: \{1, 2, ..., n\} \rightarrow \{1, 2, ..., m\}$

such that its autocorrelation satisfies

 $C(\varphi, \tau) = 0$ for all (τ, φ) with $|\tau| + |\varphi| \le r$ except for (0, 0).

where *r* is the zone radius in the **Manhattan metric**.

Example

A (7, 7, r = 3) ZCZ sonar array and its autocorrelation.

[13] E. F. Kraus, "Taxicab Geometry: An Adventure in Non-Euclidean Geometry," New York, USA: Dover Publications, 1986.

ZCZ-DD sonar sequences

Definition (ZCZ-DD sonar sequences)

An (*m*, *n*, *r*) **ZCZ-DD sonar sequence** is an (*m*, *n*, *r*) ZCZ sonar sequence

with **DD property**.

Example

A (5, 5, 2) ZCZ-DD sonar array and its autocorrelation.

DD property guarantees that all out-of-phase values are at most 1

- A ZCZ-DD sonar sequence is a sonar sequence.
- A ZCZ-DD sonar sequence is always a ZCZ sonar sequence, but not conversely.
- A ZCZ sonar sequence may not have DD property.

in addition to ZCZ property

(61,52,10) ZCZ Sonar sequence by computer search

- It has a **periodic structure** of a period of 13 columns repeating 4 times.
- Essentially, it gives a family of (61, *n*, 10) ZCZ sonar sequences for any positive integer *n*.
- (conventional) Optimal ZCZ sequence cannot be determined !!!

Theorem 1

Theorem 1

For an
$$(m, n, r)$$
 ZCZ sonar sequence with $n \ge m \ge 3$,

$$r \le \left\lfloor \frac{m + \sqrt{m^2 + 2n(n-2)(m-1)}}{n-2} \right\rfloor + 1.$$

Analogous to Hamming bound in Coding Theory.

The size of Manhattan-circle of radius $\left|\frac{r}{2}\right|$:

$$\left| s\left(\left\lfloor \frac{r}{2} \right\rfloor \right) \right| = 1 + 2 \left\lfloor \frac{r}{2} \right\rfloor + 2 \left\lfloor \frac{r}{2} \right\rfloor^2.$$

n times this area cannot be larger than the area given by

$$n + \left\lfloor \frac{r}{2} \right\rfloor$$
 times $m + \left\lfloor \frac{r}{2} \right\rfloor$

Some upper bounds on r from Theorem 1

Upper		n																	
bou	und	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
m	3	8	5	4	4	4	3	3	3	3	3	3	3	3	3	3	3	3	3
	4	-	7	5	5	4	4	4	4	4	4	4	4	3	3	3	3	3	3
	5			6,	5	5	5	5	4	4	4	4	4	4	4	4	4	4	4
	6			-	6	6	5	5	5	5	5	5	4	4	4	4	4	4	4
	7					6	6	6	5	5	5	5	5	5	5	5	5	5	5
	8					1	6	6	6	6	5	5	5	5	5	5	5	5	5
	9							7	6	6	6	6	6	6	5	5	5	5	5
	10						Čh,	2.29	7	6	6	6	6	6	6	6	6	6	6
	11							691	è.	7	7	6	6	6	6	6	6	6	6
	12								Crye	4	7	7	7	7	6	6	6	6	6
	13									alle		7	7	7	7	7	7	7	6
	14										PU		7	7	7	7	7	7	7
	15											ч ⁶ У	10	7	7	7	7	7	7
	16												mou		8	7	7	7	7
														0	100				

A construction of (m, n, r) ZCZ sonar sequence

Theorem 2

For **any** positive integers n and $r \ge 3$ with $m = r^2 - 1$,

the function $f \colon \{0,1,\ldots,n-1\} \to \{0,1,\ldots,m-1\}$ defined by

$$f(j) = rj \; (\bmod \; m)$$

is an (m, n, r) ZCZ sonar sequence

. . .

Example

An (8, n, 3) ZCZ sonar array.

- Meaningless to talk about conventional 'optimal' (8, n, 3) ZCZ sonar sequence of the largest value n
- We may define an optimal (m,n,r) ZCZ sonar sequence with the largest value of r for given m and n.

. . .

3 examples

(8,8,3) ZCZ sonar array

optimal (8,8,3) ZCZ sonar sequence in the sense that 3 is the largest for given n=m=8

(8,16,3) ZCZ sonar array

(8,24,3) ZCZ sonar array

An interesting sub-case: n = m.

The upper bound in Theorem 1 can be further simplified to $r < \left\lfloor \frac{m(1 + \sqrt{2m})}{m - 2} \right\rfloor + 1 \approx \lfloor 2 + \sqrt{2m} \rfloor.$

By construction, Theorem 2 for n = m gives a lower bound.

• Roughly, it says

$$\sqrt{m} \lesssim r \lesssim \sqrt{2m}.$$

Exhaustive search for the true maximum r in (m, n = m, r) ZCZ sonar sequences

	т	true max	upper bound	m	true max	upper bound	т	true max	upper bound	
-	3	1	8	23	5	9	43	8	11	
	4	2	7	24	5	9	44	8	11	
	5	2	6	25	6	9	45	8	11	
	6	2	6	26	6	9	46	8	11	
	7	3	6	27	6	9	47	8	11	
	8	3	7	28	6	9	48	8	12	
	9	3	7	29	6	9	49	9	12	
Does not exist a (8 8 4)	10	3	7	30	6	10	50	9	12	
ZCZ sonar sequence	11	3	7	31	7	10	51	9	12	
	12	4	7	32	7	10	52	9	12	
	13	4	7	33	7	10	53	9	12	
	14	4	7	34	7	10	54	9	12	
	15	4	7	35	7	10	55	9	12	
	16	4	8	36	7	10	56	9	12	
	17	5	8	37	7	10	57	9	12	
	18	5	8	38	7	10	58	9	12	
	19	5	8	39	7	11	59	9	13	quito C
	20	5	8	40	8	11	60	10	13	quite G
2023-02-12	21	5	8	41	8	11	61	10	13	
2020-00-10	22	5	8	42	8	11	62	10	13	

29

Some open problems

For (m, n, r) ZCZ sonar sequences

1) Improve the upper bound on r for (m, n, r) ZCZ sonar sequences in Theorem 1.

For (m, n, r) ZCZ-DD sonar sequences

- 2) Find the upper bound on r for given m and n.
- 3) Find the (largest) value n for given r and m.
- 4) Find some systematic constructions for the best (large) values of r > 2.

30