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Introduction

• The chaotic map is a nonlinear function characterized by its sensitivity

to initial values, where even slight differences in initial values can lead to

completely distinct outcomes.

• Due to this characteristic, it becomes possible to easily generate

infinitely different sequences solely by varying the initial values.

• The PN codes used in conventional Direct Sequence Spread Spectrum

(DSSS) systems have the fixed period, which limits the size of the

sequence set.

• Therefore, the use of chaotic sequences in existing DSSS systems

employing PN codes has been studied [3], [8]–[10].

• This paper analyzes the characteristics of sequences generated using

cascade chaotic maps employing two or three seed maps.
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Traditional Chaotic maps

1 ≤ 𝜇 ≤ 4, 𝑥𝑛 ∈ [0,1]

❖ Chebyshev map : 

𝒙𝒏+𝟏 = 𝒄𝒐𝒔(𝒖 ⋅ 𝒂𝒓𝒄𝒄𝒐𝒔(𝒙𝒏))

0 ≤ 𝑢 ≤ 4, 𝑥𝑛 ∈ [−1,1]

❖ Sine map: 

𝒙𝒏+𝟏 = 𝒓 ⋅ 𝒔𝒊𝒏(𝝅𝒙𝒏)

0 ≤ 𝑟 ≤ 1, 𝑥𝑛 ∈ [0,1]

❖ Logistic map : 𝒙𝒏+𝟏= 𝝁𝒙𝒏 𝟏− 𝒙𝒏

• In general, a chaos means a state of disorder. These terms are frequently

used in dynamic systems and were defined by R. L. Devaney [2],[6].

• The chaotic map is a nonlinear function characterized by its sensitivity to

initial values, where even slight differences in initial values can lead to

completely distinct outcomes.
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Lyapunov Exponent

• Lyapunov Exponents (LE) can be utilized to explain the chaotic

behavior of a chaotic system, as they provide a quantitative description

of the variation between two adjacent output values in a dynamic

system [7,15].

1 ≤ 𝜇 ≤ 4, 𝑥𝑛 ∈ [0,1]

❖ Chebyshev map : 

𝒙𝒏+𝟏 = 𝒄𝒐𝒔(𝒖 ⋅ 𝒂𝒓𝒄𝒄𝒐𝒔(𝒙𝒏))

0 ≤ 𝑢 ≤ 4, 𝑥𝑛 ∈ [−1,1]

❖ Sine map: 

𝒙𝒏+𝟏 = 𝒓 ⋅ 𝒔𝒊𝒏(𝝅𝒙𝒏)

0 ≤ 𝑟 ≤ 1, 𝑥𝑛 ∈ [0,1]

❖ Logistic map : 𝒙𝒏+𝟏= 𝝁𝒙𝒏 𝟏 − 𝒙𝒏

Lyapunov exponent 𝜆 = lim
𝑁⟶∞

1

𝑁


𝑖=0

𝑁−1

ln
𝑑𝑓(𝑥𝑖)

𝑑𝑥
𝜆 > 0 : Chaotic state
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Cascade chaotic system

𝑔(𝑥) 𝑓(𝑥)𝑥𝑛

Fig. 1. Structure of  CCS

• [15] LE of  CCS Γ 𝑥

𝜆Γ(𝑥) = lim
𝑁⟶∞

1

𝑁
σ𝑖=0
𝑁−1 ln

𝑑𝑔(𝑥𝑖)

𝑑𝑥
+ lim

𝑁⟶∞

1

𝑁
σ𝑖=0
𝑁−1 ln

𝑑𝑓(𝑥𝑖)

𝑑𝑥

[15] Y. Zhou, Z. Hua, C. M. Pun, and C. L. P. Chen, “Cascade chaotic system with applications,” IEEE

Transactions on Cybernetics, vol. 45, no. 9, pp. 2001–2012, Sep. 2015.

𝑥𝑛+1 = Γ 𝑥𝑛 = 𝑓(𝑔(𝑥𝑛))[15] 



7

Cascade chaotic system

[15] Y. Zhou, Z. Hua, C. M. Pun, and C. L. P. Chen, “Cascade chaotic system with applications,” IEEE

Transactions on Cybernetics, vol. 45, no. 9, pp. 2001–2012, Sep. 2015.

𝑔(𝑥) 𝑓(𝑥)𝑥𝑛

Fig. 1. Structure of  CCS

𝑥𝑛+1 = Γ 𝑥𝑛 = 𝑓(𝑔(𝑥𝑛))
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Pseudo Random Number Generators

[15] Y. Zhou, Z. Hua, C. M. Pun, and C. L. P. Chen, “Cascade chaotic system with applications,” IEEE

Transactions on Cybernetics, vol. 45, no. 9, pp. 2001–2012, Sep. 2015.

1) [15] PRNG (pseudo-random number generators)

2) Threshold method

This method involves mapping each 𝑥𝑛 value to binary using half  of  the            

range of  𝑥𝑛 corresponding to each map as a threshold.

IEEE 754 standard
52-bit binary streams 

8-bit binary mapping of 
an 8-bit symbol sequence

𝑥𝑛 ∈ [0,1]ex) 𝑓 𝑥𝑛 = ቊ
1, 𝑥𝑛≥ 0.5
0, 𝑥𝑛< 0.5
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g(x) f(x)

g(x) f(x)

[15]Cascade Chaotic System

g(x) 1. [15] 8-bits sample method
(ieee 754) 

2. 1bit sample method
(Threshold)f(x)

g(x) f(x)h(x)

g(x) f(x)h(x)

1)

2)

3)

Lyapunov Exponent
Properties of

Correlation, Balance,

NIST test

PRNG type

1. [15] 8-bits sample method
(ieee 754) 

2. 1bit sample method
(Threshold)

1. [15] 8-bits sample method
(ieee 754) 

2. 1bit sample method
(Threshold)

Properties for binary chaotic sequences generated by 

cascade chaotic maps

➢ Experiment environment
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Properties for binary chaotic sequences generated by 

cascade chaotic maps

➢ Experiment environment

• Triple-Logistic map

𝝁3𝑥𝑛 1 − 𝑥𝑛𝝁1𝑥𝑛 1 − 𝑥𝑛 𝝁2𝑥𝑛 1 − 𝑥𝑛

𝝁3

Bifurcation diagram Lyapunov Exponent
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Properties for binary chaotic sequences generated by 

cascade chaotic maps

➢ Experiment environment

• Triple-Chebyshev map

𝒖3

Bifurcation diagram Lyapunov Exponent

ChebyshevChebyshev Chebyshev
𝒖𝟏 𝒖2 𝒖3
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Properties for binary chaotic sequences generated by 

cascade chaotic maps

➢ Experiment environment

• Logistic-Sine-Logistic map

Bifurcation diagram Lyapunov Exponent

LogisticLogistic Sine
𝝁 𝑟 𝜇

𝝁
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Properties for binary chaotic sequences generated by 

cascade chaotic maps

➢ Our conjecture 

g(x) f(x)h(x)
𝑥𝑛+1 = Γ 𝑥𝑛 = 𝑓(𝑔(ℎ 𝑥𝑛 ))𝑥𝑛

• LE of  CCS Γ 𝑥

𝜆Γ(𝑥) = lim
𝑁⟶∞

1

𝑁
σ𝑖=0
𝑁−1 ln

𝑑ℎ(𝑥𝑖)

𝑑𝑥
+ lim

𝑁⟶∞

1

𝑁
σ𝑖=0
𝑁−1 ln

𝑑𝑔(𝑥𝑖)

𝑑𝑥
+ lim

𝑁⟶∞

1

𝑁
σ𝑖=0
𝑁−1 ln

𝑑𝑓(𝑥𝑖)

𝑑𝑥

𝜆Γ(𝑥) = 𝜆ℎ(𝑥) + 𝜆𝑔(𝑥) +𝜆𝑓(𝑥)
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Properties for binary chaotic sequences generated by 

cascade chaotic maps

➢ Correlation properties

TABLE I.  CORRELATION PROPERTIES FOR BINARY CHAOTIC SEQUENCES AND M-SEQUENCE
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Properties for binary chaotic sequences generated by 

cascade chaotic maps

➢ Balance properties

TABLE II. BALANCE PROPERTIES FOR BINARY CHAOTIC SEQUENCES USING TWO DISTINCT BINARY MAPPING METHOD
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Properties for binary chaotic sequences generated by 

cascade chaotic maps

➢ NIST test

TABLE III. RESULTS OF NIST STATISTICAL TEST FOR BINARY CHAOTIC SEQUENCES USING TWO DISTINCT BINARY MAPPING 
METHOD AND M-SEQUENCE
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Concluding Remark 

In this paper,

• Analyzes the characteristics of sequences generated using cascade chaotic maps

employing two or three seed maps.

• Propose a new conjecture for the LE of the cascade chaotic map using three seed

maps.

• The real-valued output sequences of CCS are converted to the binary sequences using

two binary mapping methods. These binary sequences exhibit good correlation and

balance properties.

• As a result of the NIST test, this is acceptable in all tests when using the [15] method,

but not in some tests when using the Chebyshev map as the seed map for the

threshold method.

• It is expected that the use of chaotic binary sequences can be considered in the

existing DSSS system using PN codes.



20

Thank you for listening 


