

Analysis for binary chaotic sequences generated by cascade chaotic maps

Hyojeong Choi, Daekyeong Kim, Sangwon Chae, Hong-Yeop Song School of Electrical and Electronic Engineering, Yonsei University Seoul, Korea

Yundong Lee, Sangung Shin, Hongjun Noh Tactical Communication Systems Waveform R&D, LIG Nex1 Gyeonggi-do, Korea

2023

ICTC

Contents

1. Introduction

2. Preliminary

- 1) Traditional chaotic maps
- 2) Lyapunov Exponents (LE)
- 3) Cascade chaotic system (CCS)
- 4) Pseudorandom number generators (PRNGs)
- 3. Properties for binary chaotic sequences generated by cascade chaotic maps

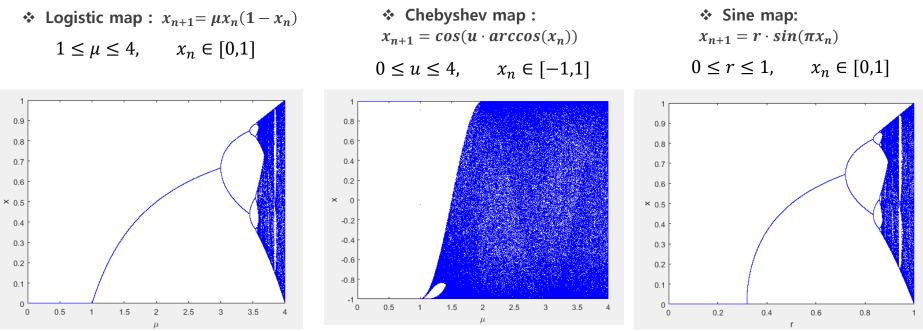
4. Concluding Remark

Introduction

- The chaotic map is a nonlinear function characterized by its sensitivity to initial values, where even slight differences in initial values can lead to completely distinct outcomes.
- Due to this characteristic, it becomes possible to easily generate infinitely different sequences solely by varying the initial values.
- The PN codes used in conventional Direct Sequence Spread Spectrum (DSSS) systems have the fixed period, which limits the size of the sequence set.
- Therefore, the use of chaotic sequences in existing DSSS systems employing PN codes has been studied [3], [8]–[10].
- This paper analyzes the characteristics of sequences generated using cascade chaotic maps employing two or three seed maps.

Traditional Chaotic maps

- In general, a chaos means a state of disorder. These terms are frequently used in dynamic systems and were defined by R. L. Devaney [2],[6].
- The chaotic map is a nonlinear function characterized by its sensitivity to initial values, where even slight differences in initial values can lead to completely distinct outcomes.

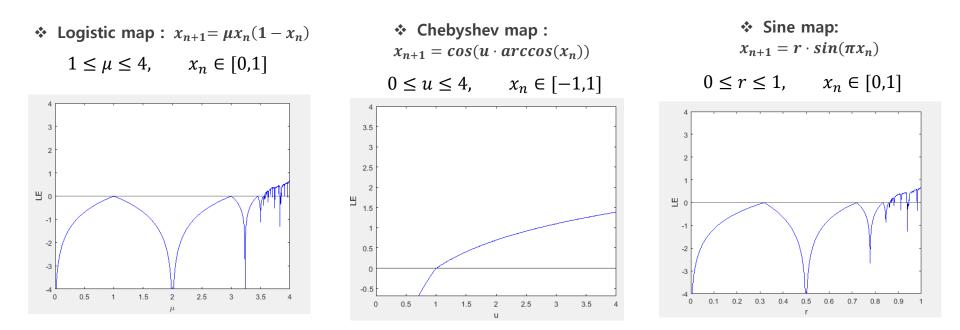


Lyapunov Exponent

5

• Lyapunov Exponents (LE) can be utilized to explain the chaotic behavior of a chaotic system, as they provide a quantitative description of the variation between two adjacent output values in a dynamic system [7,15].

Lyapunov exponent
$$\lambda = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} \ln \left| \frac{df(x_i)}{dx} \right| \qquad \lambda > 0$$
: Chaotic state



Cascade chaotic system

6

[15]
$$x_n \longrightarrow g(x) \longrightarrow f(x) \longrightarrow x_{n+1} = \Gamma(x_n) = f(g(x_n))$$

Fig. 1. Structure of CCS

• [15] LE of CCS $\Gamma(x)$

$$\lambda_{\Gamma(x)} = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} \ln \left| \frac{dg(x_i)}{dx} \right| + \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} \ln \left| \frac{df(x_i)}{dx} \right|$$
$$\lambda_{\Gamma(x)} = \lambda_{F(x)} + \lambda_{G(x)}.$$

[15] Y. Zhou, Z. Hua, C. M. Pun, and C. L. P. Chen, "Cascade chaotic system with applications," IEEE Transactions on Cybernetics, vol. 45, no. 9, pp. 2001–2012, Sep. 2015.

Cascade chaotic system

7

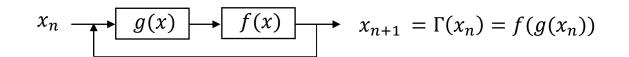
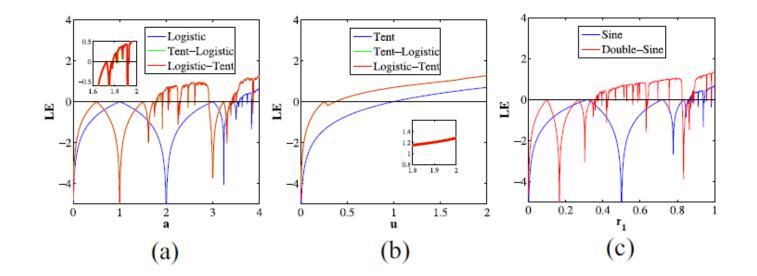


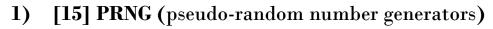
Fig. 1. Structure of CCS

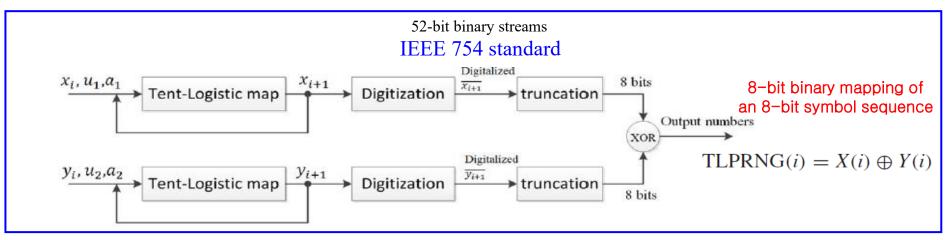


[15] Y. Zhou, Z. Hua, C. M. Pun, and C. L. P. Chen, "Cascade chaotic system with applications," IEEE Transactions on Cybernetics, vol. 45, no. 9, pp. 2001–2012, Sep. 2015.

Pseudo Random Number Generators

8





2) Threshold method

This method involves mapping each x_n value to binary using half of the range of x_n corresponding to each map as a threshold.

ex)
$$x_n \in [0,1]$$
 $f(x_n) = \begin{cases} 1, & x_n \ge 0.5 \\ 0, & x_n < 0.5 \end{cases}$

[15] Y. Zhou, Z. Hua, C. M. Pun, and C. L. P. Chen, "Cascade chaotic system with applications," IEEE Transactions on Cybernetics, vol. 45, no. 9, pp. 2001–2012, Sep. 2015.

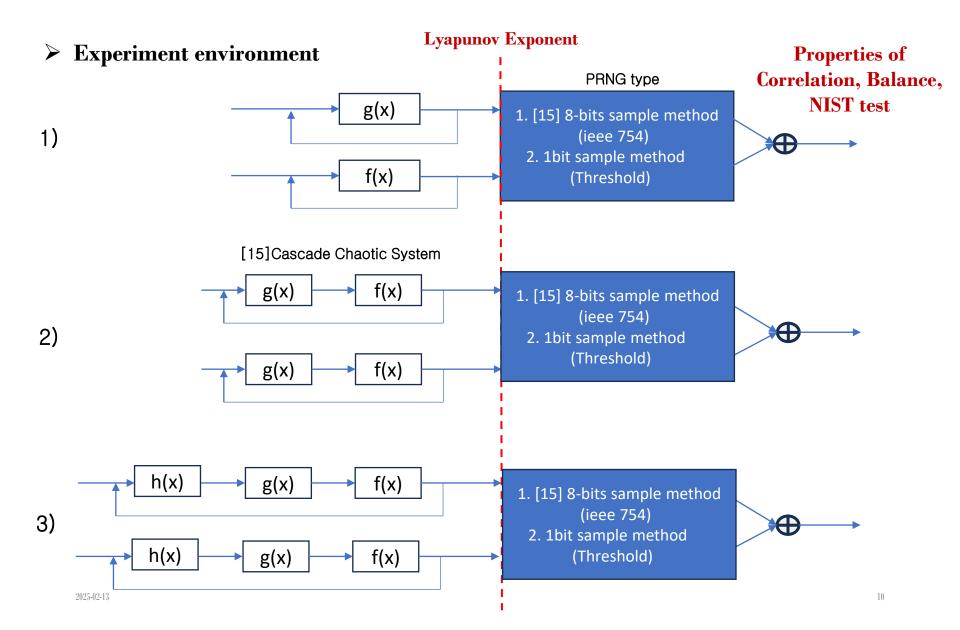
1. Introduction

2. Preliminary

- 1) Traditional chaotic maps
- 2) Lyapunov Exponents (LE)
- 3) Cascade chaotic system (CCS)
- 4) Pseudorandom number generators (PRNGs)

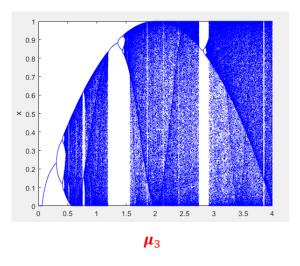
3. Properties for binary chaotic sequences generated by cascade chaotic maps (Main Results)

4. Concluding Remark

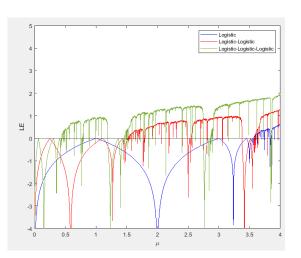


- > Experiment environment
 - Triple-Logistic map

$$\mu_1 x_n (1-x_n) \rightarrow \mu_2 x_n (1-x_n) \rightarrow \mu_3 x_n (1-x_n)$$

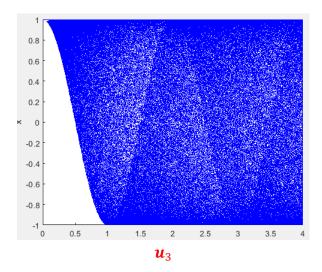


Bifurcation diagram

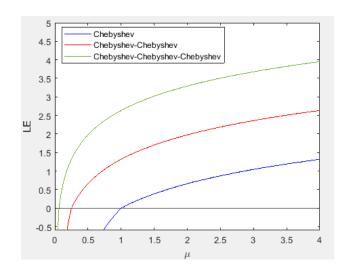


Lyapunov Exponent

- > Experiment environment
 - Triple-Chebyshev map

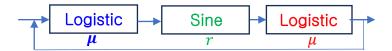


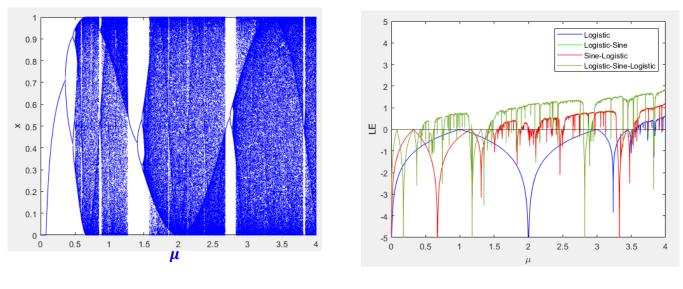
Bifurcation diagram



Lyapunov Exponent

- > Experiment environment
 - Logistic-Sine-Logistic map





Bifurcation diagram

> Our conjecture

$$h(\mathbf{x}) \qquad \qquad \mathbf{f}(\mathbf{x}) \qquad \qquad \mathbf{f}(\mathbf{x}) \qquad \qquad \mathbf{f}(\mathbf{x}) \qquad \qquad \mathbf{f}(\mathbf{x}) = f(g(h(x_n)))$$

• LE of CCS $\Gamma(x)$

$$\lambda_{\Gamma(x)} = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} \ln \left| \frac{dh(x_i)}{dx} \right| + \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} \ln \left| \frac{dg(x_i)}{dx} \right| + \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} \ln \left| \frac{df(x_i)}{dx} \right|$$

$$\lambda_{\Gamma(x)} = \lambda_{h(x)} + \lambda_{g(x)} + \lambda_{f(x)}$$

> Correlation properties

	-				-			
	Length: 10000				Length: 100000			
	Initial value: 0.4001 – 0.4100				Initial value: 0.4001 – 0.4100			
Classification	Normalized Auto-correlation		Normalized Cross-correlation		Normalized Auto-correlation		Normalized Cross-correlation	
	Average (sidelobe)	Average (sidelobe max)	Average	Max Average	Average (sidelobe)	Average (sidelobe max)	Average	Max Average
Double-Logistic								
Triple-Logistic								
Double-Chebyshev	pprox 0.008	≈ 0.04	pprox 0.008	≈ 0.04	pprox 0.002	pprox 0.01	pprox 0.002	pprox 0.01
Triple-Chebyshev	$pprox -21 \mathrm{dB}$	$\approx -14 \mathrm{dB}$	$pprox -21 \mathrm{dB}$	$pprox -14 \mathrm{dB}$	$pprox -27 \mathrm{dB}$	$pprox -20 \mathrm{dB}$	$pprox -27 \mathrm{dB}$	$pprox -20 \mathrm{dB}$
Logisitc-Sine								
Logisitc-Sine-Logisitc								
m-sequence	≈ 0.006	pprox 0.02	_	_	pprox 0.001	pprox 0.007	_	_
	$\approx -22 dB$	pprox -16 dB			$\approx -28 \mathrm{dB}$	$pprox -21 \mathrm{dB}$		

TABLE I. CORRELATION PROPERTIES FOR BINARY CHAOTIC SEQUENCES AND M-SEQUENCE

Balance properties

	Length: 10000						
Classification	Initial value: 0.4001 – 0.4100						
Classification	0 Average F	Percentage	1 Average Percentage				
	[15] method	Threshold	[15] method	Threshold			
Double-Logistic	49.9898	49.9767	50.0102	50.0233			
Triple-Logistic	50.0285	50.0581	49.9715	49.9419			
Double-Chebyshev	49.9731	49.9442	50.0269	50.0558			
Triple-Chebyshev	50.0076	50.0068	49.9924	49.0068			
Logisitc-Sine	50.0243	50.2240	49.9757	49.7760			
Logisitc-Sine-Logisitc	49.9675	50.0081	50.0325	49.9919			

TABLE II. BALANCE PROPERTIES FOR BINARY CHAOTIC SEQUENCES USING TWO DISTINCT BINARY MAPPING METHOD

> NIST test

Classificatio	Frequency	Run	Rank	DFT	Linear Comp.	Cusum	
Double-Logistic	[15] method	0.739918	0.911413	0.213309	0.534146	0.350485	0.911413
	Threshold	0.534146	0.739918	0.122325	0.017912	0.739918	0.350485
Triple-Logistic	[15] method	0.739918	0.991468	0.534146	0.350485	0.739918	0.534146
	Threshold	0.350485	0.534146	0.739918	0.122325	0.739918	0.350485
Double-Chebyshev	[15] method	0.911413	0.122325	0.122325	0.122325	0.122325	0.213309
	Threshold	0.319084	0.595549	0.000000	0.000320	0.162606	0.534146
Triple-Chebyshev	[15] method	0.213309	0.739918	0.350485	0.911413	0.350485	0.534146
	Threshold	0.115387	0.181557	0.002374	0.213309	0.102526	0.437274
Logisitc-Sine	[15] method	0.534146	0.350485	0.534146	0.213309	0.350485	0.534146
	Threshold	0.213309	0.122325	0.739918	0.534146	0.534146	0.122325
Logisitc-Sine-Logisitc	[15] method	0.739918	0.213309	0.122325	0.911413	0.213309	0.739918
	Threshold	0.066882	0.911413	0.739918	0.213309	0.350485	0.739918
m-sequence		0.262249	0.224821	0.000000	0.000320	0.000000	0.002559

TABLE III. RESULTS OF NIST STATISTICAL TEST FOR BINARY CHAOTIC SEQUENCES USING TWO DISTINCT BINARY MAPPING METHOD AND M-SEQUENCE

1. Introduction

2. Preliminary

- 1) Lyapunov Exponents (LE)
- 2) Cascade chaotic system (CCS)
- 3) Pseudorandom number generators (PRNGs)
- 3. Properties for binary chaotic sequences generated by cascade chaotic maps

4. Concluding Remark

Concluding Remark

In this paper,

- Analyzes the characteristics of sequences generated using cascade chaotic maps employing two or three seed maps.
- Propose a new conjecture for the LE of the cascade chaotic map using three seed maps.
- The real-valued output sequences of CCS are converted to the binary sequences using two binary mapping methods. These binary sequences exhibit good correlation and balance properties.
- As a result of the NIST test, this is acceptable in all tests when using the [15] method, but not in some tests when using the Chebyshev map as the seed map for the threshold method.
- It is expected that the use of chaotic binary sequences can be considered in the existing DSSS system using PN codes.

Thank you for listening