

QC-LDPC codes from Various Golomb Rulers

Daekyeong Kim, Hyojeong Choi, and Hong-Yeop Song Yonsei University ICTC 2023

- Introduction
 - Motivation
 - QC-LDPC codes
 - Golomb ruler and B_h sequence
- QC-LDPC codes from B_h sequences
 - Main construction platform
 - Construction of the girth-8 codes
 - Example
- Simulation
 - FER performance
- Conclusion

- Introduction
 - Motivation
 - QC-LDPC codes
 - Golomb ruler and B_h sequence
- QC-LDPC codes from B_h sequences
 - Main construction platform
 - Construction of the girth-8 codes
 - Example
- Simulation
 - FER performance
- Conclusion

Motivation

- Kim in [1] proposed the construction of girth-8 QC-LDPC codes using Golomb ruler in multiplication table algorithm.
- In this paper, we construct QC-LDPC codes using a special type of Golomb ruler called B_h sequence and compare the number of cycle and performance of the resulting codes with the codes from Golomb ruler.

[1] I. Kim and H.-Y. Song, "A construction for girth-8 QC-LDPC codes using Golomb rulers," Electronic Letters, vol. 58, no. 15, pp. 582-584, July 2022.

QC-LDPC codes

- Widely used because of its simple encoding and parallel decoding (WIMAX, WIFI, 5GNR, ...).
- Avoid short length cycles and increase the length of shortest cycle (Girth) in Tanner graph for decoding performance

Example of 6-cycle in Tanner graph

Golomb ruler

• A Golomb ruler [2] is a set of s marks of integers $\{g_1,g_2,\ldots,g_s\}$ with $g_1 < g_2 < \ldots < g_s$ such that

$$g_j - g_i$$

are all distinct for all i < j.

- The distance $L = g_n g_1$ is called the length of the above s-mark Golomb ruler.
- Example of 4-mark Golomb ruler {0, 1, 4, 6}

Distances are all distinct

B_h sequence

• A sequence $a_1 < a_2 < ... < a_n$ is called B_h sequence [11] if the h-fold sums

 $a_{j_1} + a_{j_2} + \dots + a_{j_h}$

are all distinct for all $j_1 \leq j_2 \leq \dots \leq j_h$.

• The difference $L = a_s - a_1$ is called the length of the B_h sequence.

Relation between Golomb ruler and B_h sequence

• All B_h sequences are special type of Golomb ruler

- Introduction
 - Motivation
 - QC-LDPC codes
 - Golomb ruler and *B_h* sequence
- QC-LDPC codes from B_h sequences
 - Main construction platform
 - Construction of the girth-8 codes
 - Example
- Simulation
 - FER performance
- Conclusion

Main Construction Platform

- E = [e(i,j)] is a $3 \times s$ exponent matrix of integers
- I is the identity matrix of size $P \times P$
- $I^{(t)}$ is the identity matrix I circularly shifted to the right t times. It is called circular permutation matrix (CPM)

Algorithm 1 Main Construction Platform

Input: A positive integer P and two integer sequences

$$a = (a_1, a_2, a_3)$$
 and $b = (b_1, b_2, ..., b_s)$

Output: Binary $3P \times sP$ matrix H

Step1 : Construct E = [e(i,j)] by $e(i,j) = a_i \cdot b_j$ for all i, j

Step2 : Construct *H* by replacing each element of E by an appropriate CPM:

$$H = \begin{bmatrix} I^{(a_1 \cdot b_1)} & I^{(a_1 \cdot b_2)} & \dots & I^{(a_1 \cdot b_3)} \\ I^{(a_2 \cdot b_1)} & I^{(a_2 \cdot b_2)} & \dots & I^{(a_2 \cdot b_3)} \\ I^{(a_3 \cdot b_1)} & I^{(a_3 \cdot b_2)} & \dots & I^{(a_3 \cdot b_3)} \end{bmatrix}$$

Construction of the girth-8 codes

Theorem 1: Assume that the sequence a = (1,2,3), $b = (b_1, b_2, ..., b_s)$ and $P \times P$ CPMs are used in Algorithm 1. Let b be a B_3 sequence of length L. Then, the resulting QC-LDPC code has girth 8 and 8-cycles appear exactly $\binom{s}{2} \times P$ times if

1)
$$P > 4L$$
 (in general)

or

2) P > 3L (when P is odd).

inevitable 8-cycle appears $\binom{s}{2} \times P$ times

Example

• Using B_3 sequence {0,2,11,26,29,45} (L = 45)

\times	0	2	11	26	29	45
1	0	2	11	26	29	45
2	0	4	22	52	58	90
3	0	6	33	78	78	135

Exponent matrix E

I ⁽⁰⁾	I ⁽²⁾	I ⁽¹¹⁾	I ⁽²⁶⁾	I ⁽²⁹⁾	I ⁽⁴⁵⁾
I ⁽⁰⁾	I ⁽⁴⁾	I ⁽²²⁾	I ⁽⁵²⁾	I ⁽⁵⁸⁾	I ⁽⁹⁰⁾
I ⁽⁰⁾	I ⁽⁶⁾	I ⁽³³⁾	I ⁽⁷⁸⁾	I ⁽⁷⁸⁾	$I^{(135)}$

P = 181 or 137

Cycle property

- Comparison of the number of cycles (Golomb ruler vs B_3 sequence)
- Less 8-,10- and 12- cycle for using B_3 sequence

		P=181 (N=1086)			
		Golomb ruler {0,1,8,12,14,17}	B ₃ sequence {0,2,11,26,29,45}		
	4-cycle	0	0		
	6-cycle	0	0		
→	8-cycle	5249	$2715 = \binom{6}{2} \times 181$		
	10-cycle	27512	3982		
	12-cycle	255572	102989		

The length of shortest cycle = Girth = 8

Cycle property

• Less 8-,10- and 12- cycle for using B_3 sequence

		P=137 (N=822)		
		Golomb ruler {0,1,8,12,14,17}	B ₃ sequence {0,2,11,26,29,45}	
	4-cycle	0	0	
	6-cycle	0	0	
→	8-cycle	3973	$2055 = \binom{6}{2} \times 137$	
	10-cycle	20824	4110	
	12-cycle	193444	97681	

The length of shortest cycle = Girth = 8

- Introduction
 - Motivation
 - QC-LDPC codes
 - Golomb ruler and *B_h* sequence
- QC-LDPC codes from B_h sequences
 - Main construction platform
 - Construction of the girth-8 codes
 - Example
- Simulation
 - FER performance
- Conclusion

FER performance

FER performance

Conclusion

• In this paper, we constructed QC-LDPC codes from B_3 sequence

• Prove that resulting codes have girth 8 and leaves 8-cycles of some special case only

• Show that resulting codes shows additional coding gain over the code from general Golomb rulers

• Show that that resulting codes have similar performance with the modified LDPC codes from 5GNR basegraph2

Thank for listening