

We are about to submit the manuscript of this presentation and many more into some journal. Therefore, please do not record this presentation, please!

Construction of 5-SEQ LRCs with Availability 2 from Golomb Rulers

Hyojeong Choi and Hong-Yeop Song School of Electrical and Electronic Engineering, Yonsei University Seoul, Korea

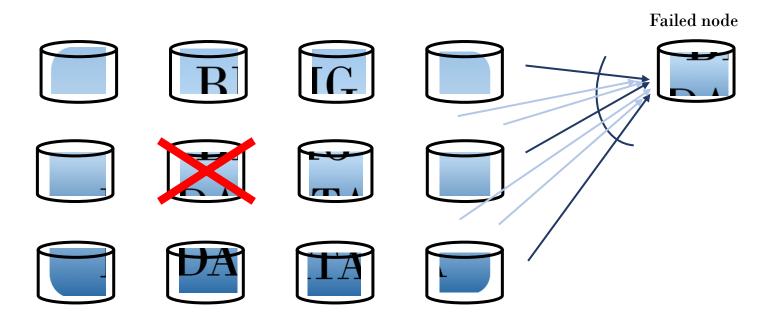
2023 Sino-Korea Coding Theory Conference

Oct. 20-22, 2023

Contents

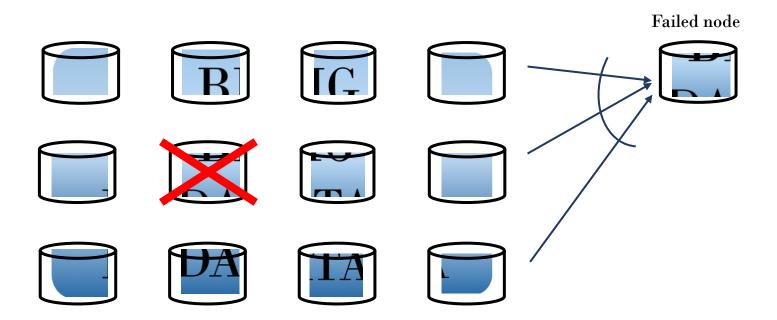
- Preliminary
- 5-seq LRCs with availability 2 from Golomb Rulers
- Optimal case
- Concluding Remark

• To guarantee the reliability against node failures, various coding techniques have been applied



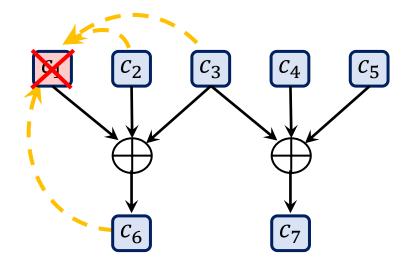
[Gopalan et al. 12]

• Locally repairable code (LRC) just needs a small number of nodes to repair the single node failure



• Locality

The number of nodes accessed to repair a single node failure



Locality of $c_1 \Rightarrow 3$

• Code *C* has locality *r*:

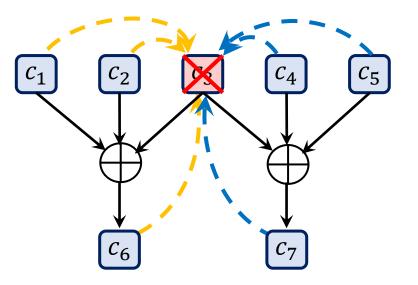
All coded symbols have the locality at most r. *C* is denoted as [n,k,r] LRC.

• Availability

The number of disjoint repair sets to repair a single node failure

Repair set of $c_3 \Rightarrow \{c_1, c_2, c_6\}$ **Repair set of** $c_3 \Rightarrow \{c_4, c_5, c_7\}$

Locality of $c_3 \Rightarrow 3$ Availability of $c_3 \Rightarrow 2$



LRCs for multiple erasures

7

t-parallel-recovery LRCs

The repaired erasure cannot participate in the repair process of the unrepaired erasures

E.g. Erasures: 1 st , 2 nd symbol	i th symbol	Repair set
Repaired locally and parallelly	1	{2 ,3} and {4 , 7 }
	2	{ 1 ,3} and { 5 , 8 }

• *u*-sequential-recovery (u-seq) LRCs

The repaired erasure can participate in the repair process of the unrepaired erasures

	i th symbol	Repair set
E.g. Erasures: 1^{st} , 2^{nd} , 7^{th} symbol	1	$\{2,3\}$ and $\{4,7\}$
Locally repaired by order $7 \rightarrow 2 \rightarrow 1$ $2 \rightarrow 7 \rightarrow 1$	2	{ 1 ,3} and { 5 , 8 }
$2 \text{ and } 7 \rightarrow 1$	7	{ 1 ,4} and { 8 , 9 }

+ h

The *repair time* is defined the maximum number of steps required to repair any *u* erasures.

[8] Z. Jing and H. -Y. Song, "Girth-Based Sequential-Recovery LRCs," IEEE Access, vol. 10, pp. 126156-126160, 2022.

Known Fact 1 [8].

- 1) A linear block code is a u-seq LRC with locality r if its parity check matrix satisfies the following:
 - (i) the girth is 2(u + 1),
 - (ii) the **column weight** is at least 2, and

(iii) the row weight is at most r + 1.

2) The **repair time** of *u*-seq LRC defined above is at most $\lfloor u/2 \rfloor$.

8

[8] Z. Jing and H. -Y. Song, "Girth-Based Sequential-Recovery LRCs," IEEE Access, vol. 10, pp. 126156-126160, 2022.

(example)

A binary **3**-seq LRC is constructed by the following parity-check matrix H with girth **8**.

disjoint repair group

$$H = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

[8] Z. Jing and H. -Y. Song, "Girth-Based Sequential-Recovery LRCs," IEEE Access, vol. 10, pp. 126156-126160, 2022.

(example)

A binary **3**-seq LRC is constructed by the following parity-check matrix H with girth **8**.

$$H = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

Erasures: 1st, 4nd, 7th symbols

i th symbol	Repair set
1	$\{2,3\}$ and $\{4,7\}$
4	{ 5 , 6 } and { 1 ,7}
7	{ 8 , 9 } and { 1 , 4 }

[8] Z. Jing and H. -Y. Song, "Girth-Based Sequential-Recovery LRCs," IEEE Access, vol. 10, pp. 126156-126160, 2022.

(example)

A binary 3-seq LRC is constructed by the following parity-check matrix H with girth 8.

$$H = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

Erasures: 1st, 2nd, 7th symbols

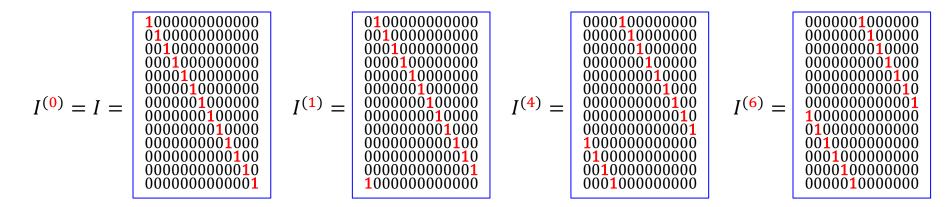
i th symbol	Repair set
1	{ 2 , 3 } and { 4 ,7}
2	{ 1 ,3} and { 5 , 8 }
7	{ 1 ,4} and { 8 , 9 }

Constructing a parity check matrix for QC-LDPC codes

exponent matrix $E = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 4 & 6 \end{pmatrix}$ over the integers and a positive integer m parity check matrix $H = \begin{bmatrix} I^{(1)} & I^{(1)} & I^{(1)} & I^{(1)} \\ I^{(0)} & I^{(1)} & I^{(4)} & I^{(6)} \end{bmatrix}$ over GF(2) of size $2m \times 4m$

where $I^{(j)}$ is the $m \times m$ identity matrix whose columns are circularly shifted *j* times

Example: Select $m = 13 \Rightarrow H$ becomes a 26 × 52 matrix with



[5] M.P.C. Fossorier, IEEE Trans. Inf. Theory, 2004 gives a necessary condition for the existence of even-cycles in H

0100000000000	0100000000000	0100000000000	0100000000000
0010000000000	0010000000000	00 1 0000000000	00 1 0000000000
0001000000000	0001000000000	000 1 000000000	0001000000000
0000100000000	0000 1 00000000	0000 <mark>1</mark> 00000000	0000 <mark>1</mark> 00000000
00000 <mark>1</mark> 0000000	0000010000000	00000 <mark>1</mark> 0000000	00000 <mark>1</mark> 0000000
0000001000000	0000001000000	000000 <mark>1</mark> 000000	000000 <mark>1</mark> 000000
0000000100000	0000000100000	0000000 <mark>1</mark> 00000	0000000100000
000000010000	00000000 <mark>1</mark> 0000	00000000 <mark>1</mark> 0000	00000000 <mark>1</mark> 0000
0000000001000	0000000001000	000000000 <mark>1</mark> 000	0000000001000
0000000000100	00000000000 <mark>1</mark> 00	00000000000 <mark>1</mark> 00	00000000000 <mark>1</mark> 00
00000000000010	00000000000010	000000000000010	00000000000010
000000000000001	00000000000000	00000000000001	00000000000000
10000000000000	1 0000000000000	1 0000000000000	1 0000000000000
100000000000000000000000000000000000000	0100000000000	0000100000000	0000001000000
0100000000000	0010000000000	00000 <mark>1</mark> 0000000	0000000100000
0010000000000	0001000000000	000000 <mark>1</mark> 000000	00000000 <mark>1</mark> 0000
000100000000	0000100000000	0000000100000	0000000001000
0000100000000	0000010000000	0000000010000	0000000000100
0000010000000	0000001000000	0000000001000	0000000000010
0000001000000	0000000100000	0000000000100	0000000000000001
0000000100000	0000000010000	0000000000010	1000000000000
0000000010000	0000000001000	0000000000000001	0100000000000
0000000001000	0000000000100	1000000000000	0010000000000
0000000000100	0000000000010	0100000000000	0001000000000
	00000000000000	0010000000000	0000100000000
0000000000000001	1 000000000000000000000000000000000000	000 1 000000000	00000 <mark>1</mark> 0000000
			•

We will see later that this parity check matrix gives

a 5-seq LRC with parameters: length n = 52, dimension k = 25, locality r = 3and availability t = 2

CCL O	_	What is this?		
$E = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$		$H = \begin{bmatrix} I^{(1)} & I^{(1)} \\ I^{(0)} & I^{(1)} \end{bmatrix}$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} I^{(1)} & I^{(1)} \\ I^{(1)} & I^{(4)} \end{bmatrix}$	
$\begin{array}{c} 010000000000\\ 001000000000\\ 000100000000$	$\begin{array}{c} 010000000000\\ 001000000000\\ 000100000000$	$\begin{array}{c} 010000000000\\ 001000000000\\ 000100000000$	$\begin{array}{c} 010000000000\\ 001000000000\\ 000100000000$	t
00000000000100 00000000000010 000000000	00000000000010 00000000000001 100000000	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	000100000000 000010000000 0000010000000 000001000000	

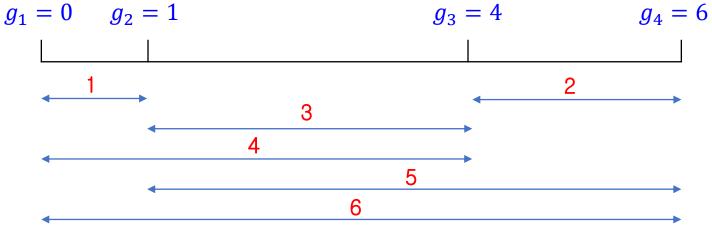
We will see later that this parity check matrix gives

a 5-seq LRC with parameters: length n = 52, dimension k = 25, locality r = 3and availability t = 2

Golomb rulers

s-mark Golomb ruler: A set of s integers $0 = g_1 < g_2 < \dots < g_s$ such that $g_j - g_i$ for i < j are all distinct.

Example: 4-mark Golomb ruler $\{ g_1, g_2, g_3, g_4 \} = \{ 0, 1, 4, 6 \}$



Interval distances are all distinct

- Preliminary
- 5-seq LRCs with availability 2 from Golomb Rulers
- Optimal case
- Concluding Remark

Main Result

Construction of 5-seq LRCs with availability t = 2 from a Golomb Ruler

- We need an s-mark Golomb ruler: $0 = g_1 < g_2 < \dots < g_s$ of length g_s .
 - distances are all distinct \Rightarrow

 $g_i \neq g_j$ for i < j

as well as $g_j - g_i \neq g_l - g_k$ for i < j and k < l with $i \neq k$

• We need to choose a positive integer m satisfying the following three conditions:

1) $g_i \neq g_j \pmod{m}$ for $i < j$	$\leftarrow m > g_s$
2) $g_j - g_i \neq -(g_l - g_k) \pmod{m}$ for $i < j$ and $k < l$ but not necessarily $i \neq k$	$\Leftarrow m > 2g_s$ and some more
3) GCD of <i>m</i> and all the distances $(g_j - g_i)'s$ is collectively 1 (not pairwise)	\Leftarrow any <i>m</i> when $g_j - g_i = 1$ for some $i < j$

Main Result

Construction of 5-seq LRCs with availability t=2 from a Golomb Ruler

Theorem 1.

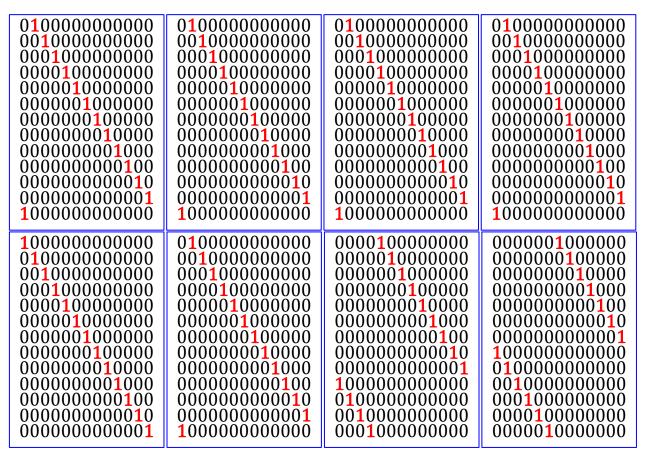
- Let $0 = g_1 < g_2 < \dots < g_s$ of length g_s be an s-mark Golomb ruler.
- Let *m* be a positive integer satisfying the three conditions above.
- Let the exponent matrix *E* be of size 2 × *s* in which the first row is a constant number *c* and the second row is *g*₁, *g*₂, ..., *g_s*.
- Construct a binary $2m \times sm$ matrix H by substituting $I^{(c)}$ or $I^{(g_j)}$ into the positions of E. Then, H is a parity check matrix of a **5-seq LRC** with n = sm, k = (s - 2)m + 1, r = s - 1 and availability t = 2.

Example

- 4-mark Golomb ruler: {0,1,4,6}
- Choose $m = 13 > 6 = g_s$ and $13 > 12 = 2g_s$

✓ One of the distances is 1. So the third condition is automatically satisfied.

$$E = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 4 & 6 \end{pmatrix} \qquad \blacksquare \qquad H = \begin{bmatrix} I^{(1)} & I^{(1)} & I^{(1)} & I^{(1)} \\ I^{(0)} & I^{(1)} & I^{(4)} & I^{(6)} \end{bmatrix}$$



This parity check matrix gives

a 5-seq LRC with parameters: length n = 52, dimension k = 25, locality r = 3and availability t = 2

Some Remarks

This constant can be any number.

$E = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$		$H = \begin{bmatrix} I^{(1)} & I^{(1)} \\ I^{(0)} & I^{(1)} \end{bmatrix}$	$\begin{bmatrix} I^{(1)} & I^{(1)} \\ I^{(4)} & I^{(6)} \end{bmatrix}$
$\begin{array}{c} 010000000000\\ 001000000000\\ 000100000000$	$\begin{array}{c} 010000000000\\ 001000000000\\ 000100000000$	$\begin{array}{c} 010000000000\\ 001000000000\\ 000100000000$	$\begin{array}{c} 010000000000\\ 01000000000\\ 000100000000$
$\begin{array}{c} 0000100000000\\ 0000010000000\\ 0000001000000\\ 0000000100000\\ 00000000$	$\begin{array}{c} 000001000000\\ 000000100000\\ 000000010000\\ 00000000$	$\begin{array}{c} 0000000010000\\ 000000000100\\ 0000000000$	$\begin{array}{c} 0000000000100\\ 000000000010\\ 1000000000$

Some Remarks

This can be any Golomb ruler. The number of marks determines its size.

$E = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 6 \end{pmatrix}$	$H = \begin{bmatrix} I^{(1)} & I^{(1)} \\ I^{(0)} & I^{(1)} \end{bmatrix}$	$\begin{bmatrix} I^{(1)} & I^{(1)} \\ I^{(4)} & I^{(6)} \end{bmatrix}$
	4 0/	$I^{(0)}$ $I^{(1)}$	$I^{(4)} I^{(6)}$
9 T			
0100000000000	0100000000000	0100000000000	0100000000000
0010000000000	0010000000000	0010000000000	0010000000000
0001000000000	0001000000000	0001000000000	0001000000000
0000100000000	0000100000000	0000100000000	0000 <mark>1</mark> 00000000
0000010000000	0000010000000	0000010000000	0000010000000
0000001000000	0000001000000	0000001000000	0000001000000
0000000100000	0000000100000	0000000100000	0000000100000
000000010000	0000000010000	0000000010000	0000000010000
0000000001000	0000000001000	0000000001000	0000000001000
0000000000100	0000000000100	0000000000100	0000000000100
0000000000010	00000000000000000000000000000000000000	0000000000010	00000000000010 000000000000001
00000000000001	100000000000000	$\begin{array}{c} 00000000000001 \\ 1000000000000000 \end{array}$	10000000000000
100000000000000000000000000000000000000	100000000000000	100000000000000	100000000000000
1000000000000	0100000000000	0000100000000	0000001000000
01000000000000	00100000000000	0000010000000	0000000100000
0010000000000	0001000000000	0000001000000	0000000010000
0001000000000	0000100000000	0000000100000	0000000001000
0000100000000	0000010000000	0000000010000	0000000000100
0000010000000	0000001000000	0000000001000	0000000000010
0000001000000	0000000100000	0000000000100	00000000000001
0000000100000	0000000010000	0000000000010	1000000000000
000000010000	000000001000	0000000000001	0100000000000
0000000001000	0000000000100	1000000000000	0010000000000
0000000000100	0000000000010	0100000000000	0001000000000
0000000000010	00000000000001	0010000000000	0000100000000
0000000000000	1000000000000	000 1 000000000	0000010000000

 $s\text{-mark} \rightarrow \text{length} = sm$ $H \text{ matrix has dimension } 2m \times sm$ n - k = 2mor k = n - 2m = sm - 2m = (s - 2)mwhen the rows of H are all linearly
independent.
Otherwise, in general, we have $k \ge (s - 2)m$ In this case, we have exactly k = (s - 2)m + 1

Some Remarks

$E = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 \\ 4 & 6 \end{pmatrix} \blacksquare$	$H = \begin{bmatrix} I^{(1)} & I^{(1)} \\ I^{(0)} & I^{(1)} \end{bmatrix}$	$\begin{bmatrix} I^{(1)} & I^{(1)} \\ I^{(4)} & I^{(6)} \end{bmatrix}$
010000000000	010000000000	010000000000	010000000000000000000000000000000000000
0010000000000000000000000	0010000000000000000000000	0010000000000000000000000	
000100000000 0000100000000	$\begin{array}{c} 0001000000000\\ 0000100000000 \end{array}$	0001000000000000000000000000000000000	000100000000000000000000000000000000000
000001000000 000001000000	$\begin{array}{c} 000001000000\\ 0000001000000\\ 0000001000000\\ 00000000$	$\begin{array}{c} 0000010000000\\ 0000001000000\\ 0000001000000\\ 00000000$	0000010000000 0 00000010000000 0 00000010000000 0
$\begin{array}{c} 0000000100000\\ 0000000010000\\ 000000000$	$\begin{array}{c} 0000000100000\\ 0000000010000\\ 000000000$	$\begin{array}{c} 0000000100000\\ 0000000010000\\ 000000000$	$\begin{array}{c} 0000000100000\\ 0000000010000\\ 000000000$
0000000000100	00000000000100	00000000000100	0000000000100
00000000000010	00000000000010	00000000000010	
00000000000001	00000000000001	00000000000001	000000000000000000000000000000000000000
10000000000000000000000	10000000000000000000000	10000000000000	
100000000000	010000000000	000010000000	0000 00100 0000
0100000000000000000000000	0010000000000000000000000	00000100000000	0000000100000
001000000000	$\begin{array}{c} 000100000000\\ 0000100000000\\ 0000100000000$	000000100000	000000010000
0001000000000		000000100000	000000001000
000010000000 0000010000000 000001000000	$\begin{array}{c} 000001000000\\ 0000001000000\\ 0000000100000\\ \end{array}$	$\begin{array}{c} 0000000010000\\ 00000000001000\\ 00000000$	0000000000100 0000000000010 0000000000
0000000100000	0000000010000	000000000000000000000000000000000000000	1000000000000
0000000010000	0000000001000		0100000000000000
0000000001000 0000000000100	00000000000100 0000000000010	$\begin{array}{c} 1000000000000\\ 01000000000000\\ 00100000000$	001000000000000000000000000000000000000
00000000000010	00000000000000	001000000000	000010000000
000000000000001	10000000000000000000000	00010000000000	0000010000000

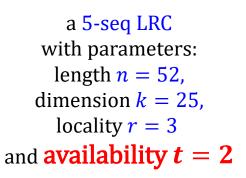
- $g_i \neq g_j \pmod{m}$ for i < j
- $g_j g_i \neq -(g_l g_k) \pmod{m}$ for i < j and k < l but not necessarily $i \neq k$
- GCD of *m* and all the distances (g_j g_i)'s is collectively 1 (not pairwise)

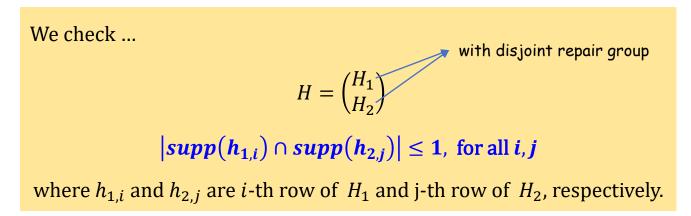
The size *m* must be carefully selected for a given s-mark Golomb ruler.

- Easy choice is $m > 2g_s$
- There are possible values of m in the range of $g_s < m < 2g_s$
- We found the proposed 5-seq LRC in some cases becomes optimal in the sense of the code rate.

$E = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 \\ 4 & 6 \end{pmatrix} \blacksquare$	$H = \begin{bmatrix} I^{(1)} & I^{(1)} \\ I^{(0)} & I^{(1)} \end{bmatrix}$	$\begin{bmatrix} I^{(1)} & I^{(1)} \\ I^{(4)} & I^{(6)} \end{bmatrix}$
$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$\begin{array}{c} 01000000000\\ 0100000000\\ 00010000000\\ 00001000000\\ 000001000000\\ 000000100000\\ 000000100000\\ 00000000$	$\begin{array}{c} 010000000000\\ 001000000000\\ 000100000000$	$\begin{array}{c} 010000000000\\ 001000000000\\ 000100000000$
$\begin{array}{c} 100000000000\\ 01000000000\\ 00100000000\\ 000100000000$	$\begin{array}{c} 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $	$\begin{array}{c} 000010000000\\ 000001000000\\ 000000100000\\ 000000010000\\ 00000000$	$\begin{array}{c} 000000100000\\ 000000010000\\ 000000010000\\ 00000000$

This parity check matrix gives





[1] H. Choi, Z. Jing, G. Kim and H. -Y. Song, "Some Intersections of two Binary LRCs with Disjoint Repair Groups," The 10th International Workshop on Signal Design and its Applications in Communications (IWSDA 2022), August, 2022.

$E = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 \\ 4 & 6 \end{pmatrix} \blacksquare$	$H = \begin{bmatrix} I^{(1)} & I^{(1)} \\ I^{(0)} & I^{(1)} \end{bmatrix}$	$\begin{bmatrix} I^{(1)} & I^{(1)} \\ I^{(4)} & I^{(6)} \end{bmatrix}$
$\begin{array}{c} 01000000000\\ 00100000000\\ 00010000000\\ 000010000000\\ 000001000000\\ 000001000000\\ 000000100000\\ 000000010000\\ 00000000$	$\begin{array}{c} 010000000000\\ 001000000000\\ 000100000000$	$\begin{array}{c} 010000000000\\ 001000000000\\ 000100000000$	$\begin{array}{c} 010000000000\\ 001000000000\\ 000100000000$
$\begin{array}{c} 100000000000\\ 01000000000\\ 00100000000\\ 000100000000$	$\begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{c} 000010000000\\ 000001000000\\ 000000100000\\ 000000010000\\ 00000000$	$\begin{array}{c} 000000100000\\ 000000010000\\ 0000000010000\\ 00000000$

This parity check matrix gives

a 5-seq LRC with parameters: length n = 52, dimension k = 25, locality r = 3and **availability** t = 2

First, consider any two distinct rows h_i , h_j from the upper half $|supp(h_i) \cap supp(h_j)| = 0$

Similarly, the same is true for two distinct rows from the lower half.

Availability t = 2

	$E = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 \\ 4 & 6 \end{pmatrix} \blacksquare$	$H = \begin{bmatrix} I^{(1)} & I^{(1)} \\ I^{(0)} & I^{(1)} \end{bmatrix}$	$\begin{bmatrix} I^{(1)} & I^{(1)} \\ I^{(4)} & I^{(6)} \end{bmatrix}$	
row	$\begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{c} 010000000000\\ 0010000000000\\ 0 \\ 0 \\ 0 $	$\begin{array}{c} 010000000000\\ 0110000000000\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	$\begin{array}{c} 010000000000\\ 001000000000\\ 000100000000$	This parity check matrix gives
	0000000001000 0000000000100 0000000000	00000000000000000000000000000000000000	$\begin{array}{c} 000000000000000000000000000000000000$	0000000001000 0000000000100 0000000000	a <mark>5-seq LRC</mark> with parameters:
row	$\begin{array}{c} 100000000000\\ 010000000000\\ 00100000000$	$\begin{array}{c} 0100000\\ 0010000\\ 0001000\\ 0000100\\ 000000\\ 000000\\ 000000\\ 000000\\ 000000$	$\begin{array}{c} 00001000\\ 00000100\\ 0000001\\ 000000\\ 0000000\\ 0000000\\ 0000000\\ 000000$	$\begin{array}{c} 000000100000\\ 000000010000\\ 000000001000\\ 00000000$	length $n = 52$, dimension $k = 25$, locality $r = 3$ and availability $t = 2$

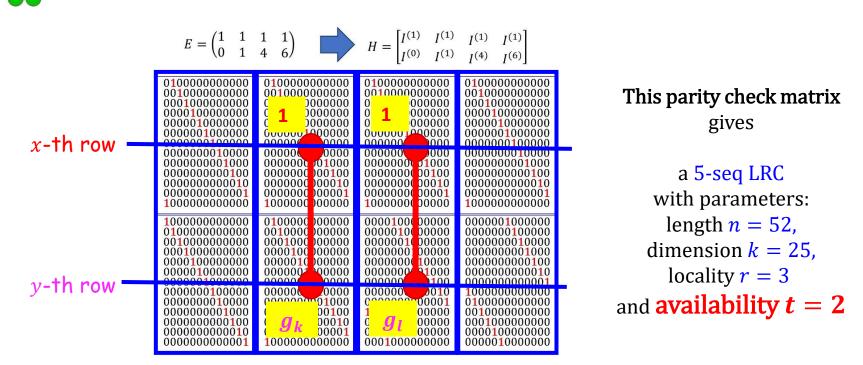
Second, assume on the contrary that $|supp(h_{1,x}) \cap supp(h_{2,y})| \ge 2$

We find two 1s in the same coordinate, say in blocks $I^{(g_k)}$ and $I^{(g_l)}$ in the lower half, and the corresponding two blocks $I^{(1)}$ in the upper half.

x-th

y-th

Availability t = 2



Second, assume on the contrary that $|supp(h_{1,x}) \cap supp(h_{2,y})| \ge 2$

We find two 1s in the same coordinate, say in blocks $I^{(g_k)}$ and $I^{(g_l)}$ in the lower half, and the corresponding two blocks $I^{(1)}$ in the upper half.

This implies that

 $1 - g_k \equiv x - y \equiv 1 - g_l \pmod{m}$ or $g_k \equiv g_l \pmod{m} \text{ for } k \neq l.$ (contradiction to the choice of m)

Examples of various 5-seq LRCs from Theorem 1

[2] S. B. Balaji, G. R. Kini, and P. V. Kumar, "A tight rate bound and a matching construction for locally recoverable codes with sequential recovery from any number of multiple erasures," in Proc. IEEE Int. Sym. Inf. Theory (ISIT), pp. 1778–1782, Jun. 2017.

• In [2], it was proposed that for $r \ge 3$, when u is odd and $\sigma = \left\lfloor \frac{u-1}{2} \right\rfloor$, the bound is as follows :

$$\frac{k}{n} \le \frac{r^{\sigma+1}}{r^{\sigma+1} + 2\sum_{i=1}^{\sigma} r^i + (u-2\sigma)}$$

TABLE I. EXAMPLES OF VARIOUS 5-SEQ LRCS FROM Theorem 1 USING OPTIMAL GOLOMB RULERS

<i>s</i> -mark Golomb rulers	smallest m that satisfies second condition in the range $m>g_s$	n	k	code rate	rate bound (1) for $u = 5$	
0, 1, 4, 6	13	52	27	<mark>0.51923</mark>	0.51923	
0, 1, 4, 9, 11	23	115	70	0.60870	0.00052	
0, 2, 7, 8, 11	21	105	64	0.60952	0.60952	
0, 1, 4, 10, 12, 17	31	186	125	<mark>0.67204</mark>	0.67204	
0, 1, 8, 11, 13, 17	51					
0, 2, 3, 10, 16, 21, 25	49	343	246	0.71720	0.71761	
0, 2, 7, 13, 21, 22, 25	49					
0, 1, 4, 9, 15, 22, 32, 34	69	552	415	0.75181	0.75219	
0, 1, 5, 12, 25, 27, 35, 41, 44	89	801	624	0.77903	0.77930	
0, 1, 6, 10, 23, 26, 34, 41, 53, 55	91	910	729	<mark>0.80110</mark>	0.80110	
9095 09 19					07	

(1)

Contents

- Preliminary
- 5-seq LRCs with availability 2 from Golomb Rulers
- Optimal case
- Concluding Remark

Scer

Rate bound for sequential recovery LRCs

[2] S. B. Balaji, G. R. Kini, and P. V. Kumar, "A tight rate bound and a matching construction for locally recoverable codes with sequential recovery from any number of multiple erasures," in Proc. IEEE Int. Symp. Inf. Theory (ISIT), pp. 1778–1782, Jun. 2017.

• In [2], it was proposed that for $r \ge 3$, when u is odd and $\sigma = \left\lfloor \frac{u-1}{2} \right\rfloor$, the bound is as follows :

$$\frac{k}{n} \le \frac{r^{\sigma+1}}{r^{\sigma+1} + 2\sum_{i=1}^{\sigma} r^i + (u-2\sigma)} \tag{1}$$

• For r = s - 1 and u = 5, the bound (1) becomes

$$\frac{k}{n} \le \frac{r^3}{r^3 + 2(r + r^2) + 1} = \frac{s^3 - 3s^2 + 3s - 1}{s^3 - s^2 + s}$$

Rate bound for sequential recovery LRCs

[2] S. B. Balaji, G. R. Kini, and P. V. Kumar, "A tight rate bound and a matching construction for locally recoverable codes with sequential recovery from any number of multiple erasures," in Proc. IEEE Int. Sym. Inf. Theory (ISIT), pp. 1778–1782, Jun. 2017.

• For
$$r = s - 1$$
 and $u = 5$, the bound (1) becomes

$$\frac{k}{n} \le \frac{r^3}{r^3 + 2(r + r^2) + 1} = \frac{(s - 1)^3}{s^3 - s^2 + s} = \frac{(s - 1)^3}{s(s^2 - s + 1)}$$

• The code rate derived from **Theorem 1** becomes

$$\frac{k}{n} = \frac{(s-2)m+1}{sm}$$

• Therefore, for the optimal case, we have

$$\frac{(s-1)^3}{s(s^2-s+1)} = \frac{(s-2)m+1}{sm}$$
 or $m = s^2 - s + 1$

• Therefore, the question now becomes:

Does there exist an *s*-mark Golomb ruler such that the positive integer $m = s^2 - s + 1$ satisfies the **three conditions** in Theorem 1?

- $g_i \neq g_j \pmod{m}$ for i < j
- $g_j g_i \neq -(g_l g_k) \pmod{m}$ for i < j and k < l but not necessarily $i \neq k$
- GCD of *m* and all the distances (g_j g_i)'s is collectively 1 (not pairwise)

 $\leftarrow m > g_s$ $\leftarrow m > 2g_s \text{ and some more}$ $\leftarrow any m \text{ when } g_j - g_i = 1 \text{ for some } i < j$

Singer Difference sets

Does there exist an *s*-mark Golomb ruler such that the positive integer $m = s^2 - s + 1$ satisfies the **three conditions** in **Theorem 1**?

[3] J. Singer, "A theorem in finite projective geometry and some applications to number theory," Trans. Amer. Math. Soc., vol. 43, no. 3, pp. 377–385, 1938.

• One of the well-known planar difference set comes from Singer with parameters $(v = q^2 + q + 1, k = q + 1, \lambda = 1)$ when *q* is a power of prime [2].

number of integers in set

m

$$= s$$

$$\frac{m = s^2 - s + 1}{(q + 1)^2 - (q + 1) + 1} = q^2 + q + 1 = v$$

Singer Difference sets

[3] J. Singer, "A theorem in finite projective geometry and some applications to number theory," Trans. Amer. Math. Soc., vol. 43, no. 3, pp. 377-385, 1938.
[4] C. J. Colbourne and J. H. Dinitz, Handbook of Combinatorial Designs, 2nd ed. Boca Raton, FL, USA: CRC Press, 2007.

• One of the well-known planar difference set comes from Singer with parameters $(v = q^2 + q + 1, k = q + 1, \lambda = 1)$ when *q* is a power of prime [2].

Construction (18.28 in [3]) Singer difference sets.

Let α be a generator of the multiplicative group of F_{q^n} . Then the set of integers $\left\{i: 0 \le i < \frac{q^{n-1}}{q-1}, \operatorname{trace}_{n/1}(\alpha^i) = 0\right\} \mod \frac{q^{n-1}}{q-1}$ form a (cyclic) difference set. Here, the *trace* denotes the usual trace function $\operatorname{trace}_{n/1}(\beta) = \sum_{i=0}^{n-1} \beta^{q^i}$ from F_{q^n} onto F_q .

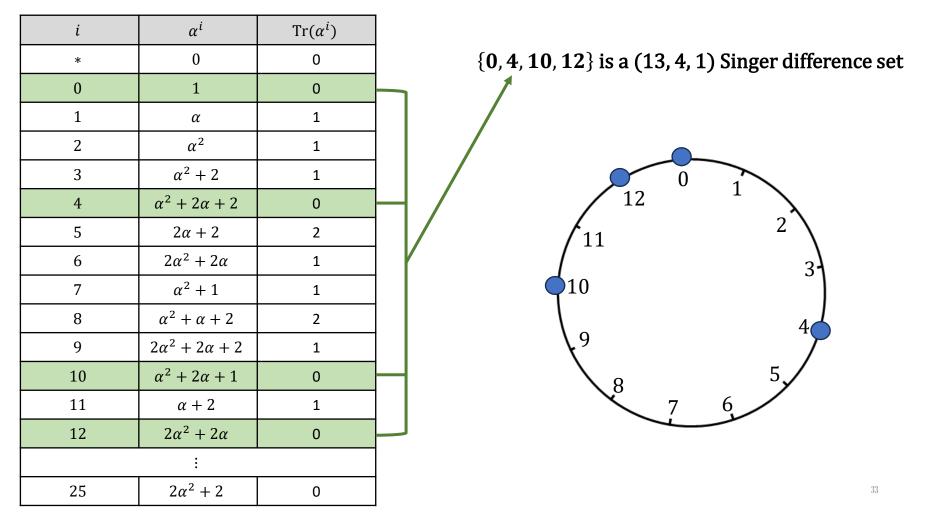
Example: (13, 4, 1) Singer difference set

Golomb rulers from Singer Difference sets

Example: (13, 4, 1) Singer difference set

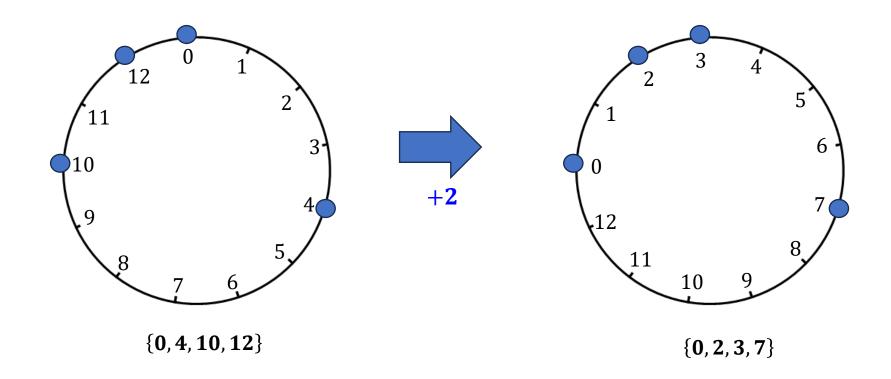
Find a set of integers $\{i : 0 \le i < 13, \text{ trace}_{3/1}(\alpha^i) = 0\}$ modulo 13

 $GF(3^3) = F_{27} = F_3(\alpha)$ using α which is a root of $x^3 + 2x^2 + 1$



Golomb rulers from Singer Difference sets

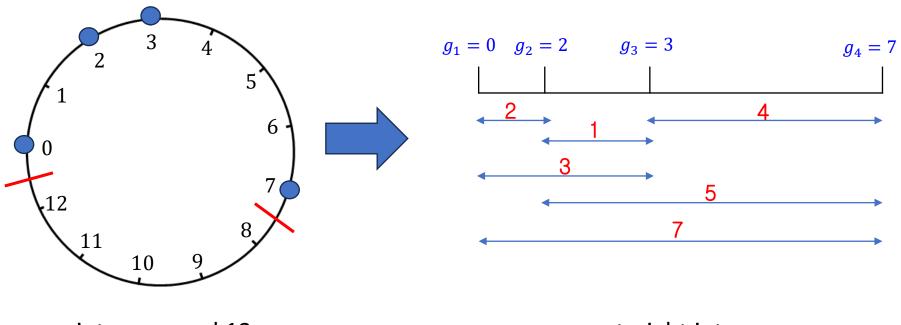
a-Shifts and t-Multiples are also difference sets for any a mod v and any t mod v with (t,v)=1



Golomb rulers from Singer Difference sets

(example) (13, 4, 1) Singer difference set

{0, 2, 3, 7} is a (13, 4, 1) Singer difference set



integers mod 13

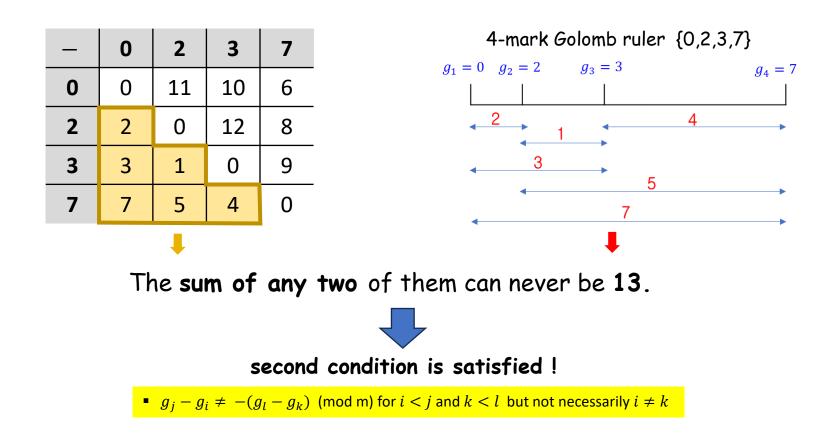
straight integers

4-mark Golomb ruler {0,2,3,7}

Scel

Golomb rulers from Singer Difference sets

(example) (13, 4, 1) Singer difference set



Examples - Optimality

TABLE II. EXAMPLES OF VARIOUS OPTIMAL 5-SEQ LRCS FROM Theorem 1 USING GOLOMB RULERS FROM SINGER DIFFERENCE SETS

S	Golomb rulers from Singer difference sets [3][4]	m	n	k	code rate = rate bound (1)
4 -	0, 2, 3, 7	<i>g_s</i> < 13 < 2 <i>g_s</i>	52	27	<mark>0.51923</mark>
	0, 1, 4, 6	2 <i>gs</i> < 13	52		
5	0, 2, 7, 8, 11	<i>g_s</i> < 21 < 2 <i>g_s</i>	105	64	<mark>0.60952</mark>
6 -	0, 1, 4, 10, 12, 17	a ()1 () a	186	124	<mark>0.67204</mark>
	0, 1, 3, 8, 12, 18	$g_s < 31 < 2g_s$			
8 -	0, 1, 3, 13, 32, 36, 43, 52		456	343	<mark>0.75219</mark>
	0, 4, 5, 17, 19, 25, 28, 35	$g_s < 57 < 2g_s$			
9 -	0, 1, 3, 7, 15, 31, 36, 54, 63	a < 72 < 2a	657	512	<mark>0.77930</mark>
	0, 2, 10, 24, 25, 29, 36, 42, 45	$g_{s} < 73 < 2g_{s}$			

$$n = sm$$

$$k = (s - 2)m + r$$

$$r = s - 1$$

$$t = 2.$$

1

- Preliminary
- 5-seq LRCs with availability 2 from Golomb Rulers
- Optimal case
- Concluding Remark

Concluding Remark

In this paper,

- We propose some new 5-seq LRCs with availability t = 2 based on Golomb rulers.
- The proposed **5-seq LRCs** can repair up to 5 erased symbols within **3 repair time**.
- We proved that the above codes are **rate-optimal** when the Golomb rulers derived from **Singer difference sets** are appropriately used.

We are about to submit the manuscript of this presentation and many more into some journal. Therefore, please do not record this presentation, please!

Thank you for listening