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Locally Repairable Code

• To guarantee the reliability against node failures, various coding 

techniques have been applied

Failed node
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Locally Repairable Code

• Locally repairable code (LRC) just needs a small number of  nodes 

to repair the single node failure

Failed node

[Gopalan et al. 12]
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Locally Repairable Code

• Locality

The number of  nodes accessed to repair a single node failure

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5

𝑐6 𝑐7

Locality of  𝑐1 ⇒ 3

• Code 𝐶 has locality 𝑟:  

All coded symbols have the locality at most 𝑟.

𝐶 is denoted as [𝑛,𝑘,𝑟] LRC.
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Locally Repairable Code

• Availability

The number of  disjoint repair sets to repair a single node failure

Locality of  𝑐3 ⇒ 3

Availability of  𝑐3 ⇒ 2

Repair set of  𝒄𝟑 ⇒ {𝒄𝟒, 𝒄𝟓, 𝒄𝟕}

Repair set of  𝒄𝟑 ⇒ {𝒄𝟏, 𝒄𝟐, 𝒄𝟔} 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5

𝑐6 𝑐7
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LRCs for multiple erasures

• 𝒖-sequential-recovery (u-seq) LRCs

➢ The repaired erasure can participate in the repair process of  the unrepaired 

erasures 

E.g.  Erasures: 1𝑠𝑡 , 2𝑛𝑑 , 7𝑡ℎ symbol

Locally repaired by order 7 → 2 → 1

2 → 7 → 1

2 𝑎𝑛𝑑 7 → 1

• 𝒕-parallel-recovery LRCs

➢ The repaired erasure cannot participate in the repair process of  the unrepaired 

erasures 

E.g.  Erasures: 1𝑠𝑡 , 2𝑛𝑑 symbol

Repaired locally and parallelly

𝑖𝑡ℎ symbol Repair set

1 {2,3} and {𝟒, 𝟕}

2 {1,3} and {𝟓, 𝟖}

𝑖𝑡ℎ symbol Repair set

1 {𝟐, 𝟑} and {𝟒, 𝟕}

2 {1,3} and {𝟓, 𝟖}

7 {1,4} and {𝟖, 𝟗}

❖ The 𝒓𝒆𝒑𝒂𝒊𝒓 𝒕𝒊𝒎𝒆 is defined the maximum number of  steps required to repair 

any 𝒖 erasures.
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Connections between LRCs for multiple erasures 

and regular LDPC

Known Fact 1 [8]. 

1) A linear block code is a 𝑢-seq LRC with locality 𝑟 if  its parity check 

matrix satisfies the following:

(i) the girth is 2(𝑢 + 1),
(ii) the column weight is at least 2, and

(iii) the row weight is at most 𝑟 + 1.

2) The repair time of  𝑢-seq LRC defined above is at most 𝑢/2 .

[8] Z. Jing and H. -Y. Song, “Girth-Based Sequential-Recovery LRCs,” IEEE Access, vol. 10, pp. 126156-126160, 2022.
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Connections between LRCs for multiple erasures 

and regular LDPC

[8] Z. Jing and H. -Y. Song, “Girth-Based Sequential-Recovery LRCs,” IEEE Access, vol. 10, pp. 126156-126160, 2022.

(example)

A binary 3-seq LRC is constructed

by the following parity-check matrix

H with girth 8.
𝐻 =

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

disjoint repair group
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Connections between LRCs for multiple erasures 

and regular LDPC

[8] Z. Jing and H. -Y. Song, “Girth-Based Sequential-Recovery LRCs,” IEEE Access, vol. 10, pp. 126156-126160, 2022.

(example)

A binary 3-seq LRC is constructed

by the following parity-check matrix

H with girth 8.
𝐻 =

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

Erasures: 1𝑠𝑡 , 4𝑛𝑑 , 7𝑡ℎ symbols

𝑖𝑡ℎ symbol Repair set

1 {𝟐, 𝟑} and {4,7}

4 {𝟓, 𝟔} and {1,7}

7 {𝟖, 𝟗} and {1,4}
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Connections between LRCs for multiple erasures 

and regular LDPC

[8] Z. Jing and H. -Y. Song, “Girth-Based Sequential-Recovery LRCs,” IEEE Access, vol. 10, pp. 126156-126160, 2022.

(example)

A binary 3-seq LRC is constructed

by the following parity-check matrix

H with girth 8.
𝐻 =

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

Erasures: 1𝑠𝑡 , 2𝑛𝑑 , 7𝑡ℎ symbols

𝑖𝑡ℎ symbol Repair set

1 {𝟐, 𝟑} and {4,7}

2 {1,3} and {𝟓, 𝟖}

7 {1,4} and {𝟖, 𝟗}
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Constructing a parity check matrix 

for QC-LDPC codes

exponent matrix  𝐸 =
1 1 1 1
0 1 4 6

over the integers and a positive integer m

parity check matrix 𝐻 =
𝐼(1) 𝐼(1)

𝐼(1) 𝐼(1)

𝐼(0) 𝐼(1)
𝐼(4) 𝐼(6)

over GF(2) of size 2𝑚 × 4𝑚

where  𝐼(𝑗) is the 𝑚 × 𝑚 identity matrix whose columns are circularly shifted 𝑗 times

Example: Select 𝒎 = 𝟏𝟑 ⇒ 𝐻 becomes a 26 × 52 matrix with

[5] M.P.C. Fossorier, IEEE Trans. Inf. Theory, 2004 gives a necessary condition for the existence of even-cycles in 𝐻

1000000000000
0100000000000
0010000000000
0001000000000
0000100000000
0000010000000
0000001000000
0000000100000
0000000010000
0000000001000
0000000000100
0000000000010
0000000000001

𝐼(0) = 𝐼 =

0100000000000
0010000000000
0001000000000
0000100000000
0000010000000
0000001000000
0000000100000
0000000010000
0000000001000
0000000000100
0000000000010
0000000000001
1000000000000

𝐼(1) =

0000100000000
0000010000000
0000001000000
0000000100000
0000000010000
0000000001000
0000000000100
0000000000010
0000000000001
1000000000000
0100000000000
0010000000000
0001000000000

𝐼(4) =

0000001000000
0000000100000
0000000010000
0000000001000
0000000000100
0000000000010
0000000000001
1000000000000
0100000000000
0010000000000
0001000000000
0000100000000
0000010000000

𝐼(6) =
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𝐸 =
1 1 1 1
0 1 4 6 𝐻 =

𝐼(1) 𝐼(1)
𝐼(1) 𝐼(1)

𝐼(0) 𝐼(1)
𝐼(4) 𝐼(6)

1000000000000
0100000000000
0010000000000
0001000000000
0000100000000
0000010000000
0000001000000
0000000100000
0000000010000
0000000001000
0000000000100
0000000000010
0000000000001

0100000000000
0010000000000
0001000000000
0000100000000
0000010000000
0000001000000
0000000100000
0000000010000
0000000001000
0000000000100
0000000000010
0000000000001
1000000000000

0000100000000
0000010000000
0000001000000
0000000100000
0000000010000
0000000001000
0000000000100
0000000000010
0000000000001
1000000000000
0100000000000
0010000000000
0001000000000

0000001000000
0000000100000
0000000010000
0000000001000
0000000000100
0000000000010
0000000000001
1000000000000
0100000000000
0010000000000
0001000000000
0000100000000
0000010000000

0100000000000
0010000000000
0001000000000
0000100000000
0000010000000
0000001000000
0000000100000
0000000010000
0000000001000
0000000000100
0000000000010
0000000000001
1000000000000

0100000000000
0010000000000
0001000000000
0000100000000
0000010000000
0000001000000
0000000100000
0000000010000
0000000001000
0000000000100
0000000000010
0000000000001
1000000000000

0100000000000
0010000000000
0001000000000
0000100000000
0000010000000
0000001000000
0000000100000
0000000010000
0000000001000
0000000000100
0000000000010
0000000000001
1000000000000

0100000000000
0010000000000
0001000000000
0000100000000
0000010000000
0000001000000
0000000100000
0000000010000
0000000001000
0000000000100
0000000000010
0000000000001
1000000000000

We will see later that 
this parity check matrix 

gives

a 5-seq LRC 
with parameters: 

length 𝑛 = 52,
dimension 𝑘 = 25,

locality 𝑟 = 3
and availability 𝑡 = 2
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𝐸 =
1 1 1 1
0 1 4 6 𝐻 =

𝐼(1) 𝐼(1)
𝐼(1) 𝐼(1)

𝐼(0) 𝐼(1)
𝐼(4) 𝐼(6)

1000000000000
0100000000000
0010000000000
0001000000000
0000100000000
0000010000000
0000001000000
0000000100000
0000000010000
0000000001000
0000000000100
0000000000010
0000000000001

0100000000000
0010000000000
0001000000000
0000100000000
0000010000000
0000001000000
0000000100000
0000000010000
0000000001000
0000000000100
0000000000010
0000000000001
1000000000000

0000100000000
0000010000000
0000001000000
0000000100000
0000000010000
0000000001000
0000000000100
0000000000010
0000000000001
1000000000000
0100000000000
0010000000000
0001000000000

0000001000000
0000000100000
0000000010000
0000000001000
0000000000100
0000000000010
0000000000001
1000000000000
0100000000000
0010000000000
0001000000000
0000100000000
0000010000000

0100000000000
0010000000000
0001000000000
0000100000000
0000010000000
0000001000000
0000000100000
0000000010000
0000000001000
0000000000100
0000000000010
0000000000001
1000000000000

0100000000000
0010000000000
0001000000000
0000100000000
0000010000000
0000001000000
0000000100000
0000000010000
0000000001000
0000000000100
0000000000010
0000000000001
1000000000000

0100000000000
0010000000000
0001000000000
0000100000000
0000010000000
0000001000000
0000000100000
0000000010000
0000000001000
0000000000100
0000000000010
0000000000001
1000000000000

0100000000000
0010000000000
0001000000000
0000100000000
0000010000000
0000001000000
0000000100000
0000000010000
0000000001000
0000000000100
0000000000010
0000000000001
1000000000000

We will see later that 
this parity check matrix 

gives

a 5-seq LRC 
with parameters: 

length 𝑛 = 52,
dimension 𝑘 = 25,

locality 𝑟 = 3
and availability 𝑡 = 2

What is this?
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Golomb rulers

𝑠-mark Golomb ruler:

A set of 𝑠 integers 0 = 𝑔1 < 𝑔2 < … < 𝑔𝑠 such that 𝑔𝑗 − 𝑔𝑖 for 𝑖 < 𝑗 are all distinct.

Example: 4-mark Golomb ruler

{ 𝑔1, 𝑔2, 𝑔3, 𝑔4 } = { 0, 1, 4, 6 }

𝑔1 = 0 𝑔2 = 1 𝑔3 = 4 𝑔4 = 6

1 2
3

4

5

6

Interval distances are all distinct
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Main Result
Construction of  5-seq LRCs with availability 𝒕 = 𝟐 from a Golomb Ruler
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• We need an s-mark Golomb ruler: 0 = 𝑔1 < 𝑔2 < … < 𝑔𝑠 of length 𝑔𝑠.

• distances are all distinct ⇒ 𝑔𝑖 ≠ 𝑔𝑗 for 𝑖 < 𝑗

as well as 𝑔𝑗 − 𝑔𝑖 ≠ 𝑔𝑙 − 𝑔𝑘 for 𝑖 < 𝑗 and 𝑘 < 𝑙 with 𝑖 ≠ 𝑘

• We need to choose a positive integer m satisfying the following three conditions:

1) 𝑔𝑖 ≠ 𝑔𝑗 (mod m) for 𝑖 < 𝑗

2) 𝑔𝑗 − 𝑔𝑖 ≠ −(𝑔𝑙 − 𝑔𝑘) (mod m) for 𝑖 < 𝑗 and 𝑘 < 𝑙 but not necessarily 𝑖 ≠ 𝑘

3) GCD of 𝑚 and all the distances 𝑔𝑗 − 𝑔𝑖 ′𝑠 is collectively 1 (not pairwise)

⇐ 𝑚 > 𝑔𝑠

⇐ 𝑚 > 2𝑔𝑠 and some more

⇐ any 𝑚 when  𝑔𝑗 − 𝑔𝑖 = 1 for some 𝑖 < 𝑗



Main Result
Construction of  5-seq LRCs with availability t=2 from a Golomb Ruler
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Theorem 1. 

• Let   0 = 𝑔1 < 𝑔2 < … < 𝑔𝑠 of length 𝑔𝑠 be an s-mark Golomb ruler. 

• Let 𝑚 be a positive integer satisfying the three conditions above. 

• Let the exponent matrix 𝐸 be of size 2 × 𝑠 in which the first row is a constant number 𝑐

and the second row is 𝑔1, 𝑔2, … , 𝑔𝑠. 

• Construct a binary 2𝑚 × 𝑠𝑚 matrix 𝐻 by substituting 𝐼(𝑐) or 𝐼(𝑔𝑗) into the positions of 𝐸. 

Then, 𝐻 is a parity check matrix of a 5-seq LRC with 

𝑛 = 𝑠𝑚, 𝑘 = 𝑠 − 2 𝑚 + 1, 𝑟 = 𝑠 − 1 and availability 𝑡 = 2.
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𝐸 =
1 1 1 1
0 1 4 6 𝐻 =

𝐼(1) 𝐼(1)
𝐼(1) 𝐼(1)

𝐼(0) 𝐼(1)
𝐼(4) 𝐼(6)

1000000000000
0100000000000
0010000000000
0001000000000
0000100000000
0000010000000
0000001000000
0000000100000
0000000010000
0000000001000
0000000000100
0000000000010
0000000000001

0100000000000
0010000000000
0001000000000
0000100000000
0000010000000
0000001000000
0000000100000
0000000010000
0000000001000
0000000000100
0000000000010
0000000000001
1000000000000

0000100000000
0000010000000
0000001000000
0000000100000
0000000010000
0000000001000
0000000000100
0000000000010
0000000000001
1000000000000
0100000000000
0010000000000
0001000000000

0000001000000
0000000100000
0000000010000
0000000001000
0000000000100
0000000000010
0000000000001
1000000000000
0100000000000
0010000000000
0001000000000
0000100000000
0000010000000

0100000000000
0010000000000
0001000000000
0000100000000
0000010000000
0000001000000
0000000100000
0000000010000
0000000001000
0000000000100
0000000000010
0000000000001
1000000000000

0100000000000
0010000000000
0001000000000
0000100000000
0000010000000
0000001000000
0000000100000
0000000010000
0000000001000
0000000000100
0000000000010
0000000000001
1000000000000

0100000000000
0010000000000
0001000000000
0000100000000
0000010000000
0000001000000
0000000100000
0000000010000
0000000001000
0000000000100
0000000000010
0000000000001
1000000000000

0100000000000
0010000000000
0001000000000
0000100000000
0000010000000
0000001000000
0000000100000
0000000010000
0000000001000
0000000000100
0000000000010
0000000000001
1000000000000

This parity check matrix 
gives

a 5-seq LRC 
with parameters: 

length 𝑛 = 52,
dimension 𝑘 = 25,

locality 𝑟 = 3
and availability 𝑡 = 2

• 4-mark Golomb ruler: {0,1,4,6}
• Choose 𝑚 = 13 > 6 = 𝑔𝑠 and  13 > 12 = 2𝑔𝑠

✓ One of the distances is 1. So the third condition is automatically satisfied.



Some Remarks
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This constant can be any number.



Some Remarks
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This can be any Golomb ruler. The number of marks determines its size.

𝑠-mark    → length = 𝑠𝑚

H matrix has dimension 2𝑚 × 𝑠𝑚

𝑛 − 𝑘 = 2𝑚
or

𝑘 = 𝑛 − 2𝑚 = 𝑠𝑚 − 2𝑚 = 𝑠 − 2 𝑚
when the rows of H are all linearly 

independent.

Otherwise, in general, we have
𝑘 ≥ 𝑠 − 2 𝑚

In this case, we have exactly
𝑘 = 𝑠 − 2 𝑚 + 1



Some Remarks
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The size 𝑚 must be carefully selected 
for a given s-mark Golomb ruler.

• Easy choice is 𝑚 > 2𝑔𝑠

• There are possible values of m in 
the range of 𝑔𝑠 < 𝑚 < 2𝑔𝑠

• We found the proposed 5-seq LRC 
in some cases becomes optimal in 
the sense of the code rate. 

▪ 𝑔𝑖 ≠ 𝑔𝑗 (mod m) for 𝑖 < 𝑗

▪ 𝑔𝑗 − 𝑔𝑖 ≠ −(𝑔𝑙 − 𝑔𝑘) (mod m) for 𝑖 < 𝑗 and 

𝑘 < 𝑙 but not necessarily 𝑖 ≠ 𝑘

▪ GCD of 𝑚 and all the distances 𝑔𝑗 − 𝑔𝑖 ′𝑠 is 

collectively 1 (not pairwise)



Availability 𝑡 = 2
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This parity check matrix 
gives

a 5-seq LRC 
with parameters: 

length 𝑛 = 52,
dimension 𝑘 = 25,

locality 𝑟 = 3

and availability 𝒕 = 𝟐

We check …

𝐻 =
𝐻1

𝐻2

𝒔𝒖𝒑𝒑 𝒉𝟏,𝒊 ∩ 𝒔𝒖𝒑𝒑 𝒉𝟐,𝒋 ≤ 𝟏, for all 𝒊, 𝒋

where ℎ1,𝑖 and ℎ2,𝑗 are 𝑖-th row of 𝐻1 and j-th row of 𝐻2, respectively.

[1] H. Choi, Z. Jing, G. Kim and H. -Y. Song, “Some Intersections of two Binary LRCs with Disjoint Repair Groups,” The 10th
International Workshop on Signal Design and its Applications in Communications (IWSDA 2022), August, 2022.

with disjoint repair group



2025-02-13 24

This parity check matrix 
gives

a 5-seq LRC 
with parameters: 

length 𝑛 = 52,
dimension 𝑘 = 25,

locality 𝑟 = 3

and availability 𝒕 = 𝟐

First, consider any two distinct rows ℎ𝑖 , ℎ𝑗 from the upper half

𝑠𝑢𝑝𝑝 ℎ𝑖 ∩ 𝑠𝑢𝑝𝑝 ℎ𝑗 = 0

Similarly, the same is true for two distinct rows from the lower half.

Availability 𝑡 = 2
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This parity check matrix 
gives

a 5-seq LRC 
with parameters: 

length 𝑛 = 52,
dimension 𝑘 = 25,

locality 𝑟 = 3

and availability 𝒕 = 𝟐

𝑥-th row

𝑦-th row

Second, assume on the contrary that 𝑠𝑢𝑝𝑝 ℎ1,𝑥 ∩ 𝑠𝑢𝑝𝑝 ℎ2,𝑦 ≥ 2

We find two 1s in the same coordinate, say in blocks 𝐼(𝑔𝑘) and 𝐼(𝑔𝑙) in the lower half,
and the corresponding two blocks 𝐼(1) in the upper half.

Availability 𝑡 = 2

1

𝒈𝒍

1

𝒈𝒌
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This parity check matrix 
gives

a 5-seq LRC 
with parameters: 

length 𝑛 = 52,
dimension 𝑘 = 25,

locality 𝑟 = 3

and availability 𝒕 = 𝟐

𝑥-th row

𝑦-th row

Second, assume on the contrary that 𝑠𝑢𝑝𝑝 ℎ1,𝑥 ∩ 𝑠𝑢𝑝𝑝 ℎ2,𝑦 ≥ 2

We find two 1s in the same coordinate, say in blocks 𝐼(𝑔𝑘) and 𝐼(𝑔𝑙) in the lower half,
and the corresponding two blocks 𝐼(1) in the upper half.

This implies that
1 − 𝑔𝑘 ≡ 𝑥 − 𝑦 ≡ 1 − 𝑔𝑙 (mod 𝑚)

or
𝑔𝑘 ≡ 𝑔𝑙 mod 𝑚 for 𝑘 ≠ 𝑙.          

(contradiction to the choice of m)

Availability 𝑡 = 2

1

𝒈𝒌

1

𝒈𝒍



Examples of various 5-seq LRCs from Theorem 1 
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• In [2], it was proposed that for 𝑟 ≥ 3, when 𝑢 is odd and 𝜎 =
𝑢−1

2
,

the bound is as follows :

𝑘

𝑛
≤

𝑟𝜎+1

𝑟𝜎+1+2 σ𝑖=1
𝜎 𝑟𝑖+(𝑢−2𝜎)

(1)

[2] S. B. Balaji, G. R. Kini, and P. V. Kumar, “A tight rate bound and a matching construction for locally recoverable codes with
sequential recovery from any number of multiple erasures,” in Proc. IEEE Int. Sym. Inf. Theory (ISIT), pp. 1778–1782, Jun. 2017.

𝑠-mark
Golomb  rulers

smallest 𝑚 that satisfies second 
condition in the range 𝑚 > 𝑔𝑠

𝑛 𝑘 code rate
rate bound (1) 

for 𝑢 = 5

0, 1, 4, 6 13 52 27 0.51923 0.51923

0, 1, 4, 9, 11 23 115 70 0.60870
0.60952

0, 2, 7, 8, 11 21 105 64 0.60952

0, 1, 4, 10, 12, 17
31 186 125 0.67204 0.67204

0, 1, 8, 11, 13, 17

0, 2, 3, 10, 16, 21, 25
49 343 246 0.71720 0.71761

0, 2, 7, 13, 21, 22, 25

0, 1, 4, 9, 15, 22, 32, 34 69 552 415 0.75181 0.75219

0, 1, 5, 12, 25, 27, 35, 41, 44 89 801 624 0.77903 0.77930

0, 1, 6, 10, 23, 26, 34, 41, 53, 55 91 910 729 0.80110 0.80110

TABLE I.  EXAMPLES OF VARIOUS 5-SEQ LRCS FROM Theorem 1 USING OPTIMAL GOLOMB RULERS

?
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Rate bound for sequential recovery LRCs

2025-02-13 29

• In [2], it was proposed that for 𝑟 ≥ 3, when 𝑢 is odd and 𝜎 =
𝑢−1

2
,

the bound is as follows :

𝑘

𝑛
≤

𝑟𝜎+1

𝑟𝜎+1+2 σ𝑖=1
𝜎 𝑟𝑖+(𝑢−2𝜎)

(1)

• For 𝑟 = 𝑠 − 1 and 𝑢 = 5, the bound (1) becomes

𝑘

𝑛
≤

𝑟3

𝑟3+2 𝑟+𝑟2 +1
=

𝑠3−3𝑠2+3𝑠−1

𝑠3−𝑠2+𝑠

[2] S. B. Balaji, G. R. Kini, and P. V. Kumar, “A tight rate bound and a matching construction for locally recoverable codes with
sequential recovery from any number of multiple erasures,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), pp. 1778–1782, Jun. 2017.



2025-02-13 30

• For 𝑟 = 𝑠 − 1 and 𝑢 = 5, the bound (1) becomes

𝑘

𝑛
≤

𝑟3

𝑟3+2 𝑟+𝑟2 +1
=

(𝑠−1)3

𝑠3−𝑠2+𝑠
=

(𝑠−1)3

𝑠(𝑠2−𝑠+1)

• The code rate derived from Theorem 1 becomes

𝑘

𝑛
=

(𝑠 − 2)𝑚 + 1

𝑠𝑚

• Therefore, for the optimal case, we have

(𝑠−1)3

𝑠(𝑠2−𝑠+1)
=

(𝑠−2)𝑚+1

𝑠𝑚
or      𝑚 = 𝑠2 − 𝑠 + 1

• Therefore, the question now becomes:

Does there exist an 𝑠-mark Golomb ruler such that the positive integer
𝑚 = 𝑠2 − 𝑠 + 1 satisfies the three conditions in Theorem 1?

[2] S. B. Balaji, G. R. Kini, and P. V. Kumar, “A tight rate bound and a matching construction for locally recoverable codes with
sequential recovery from any number of multiple erasures,” in Proc. IEEE Int. Sym. Inf. Theory (ISIT), pp. 1778–1782, Jun. 2017.

▪ 𝑔𝑖 ≠ 𝑔𝑗 (mod m) for 𝑖 < 𝑗

▪ 𝑔𝑗 − 𝑔𝑖 ≠ −(𝑔𝑙 − 𝑔𝑘) (mod m) for 𝑖 < 𝑗 and 

𝑘 < 𝑙 but not necessarily 𝑖 ≠ 𝑘

▪ GCD of 𝑚 and all the distances 𝑔𝑗 − 𝑔𝑖 ′𝑠 is 

collectively 1 (not pairwise)

⇐ 𝑚 > 𝑔𝑠

⇐ 𝑚 > 2𝑔𝑠 and some more

⇐ any 𝑚 when  𝑔𝑗 − 𝑔𝑖 = 1 for some 𝑖 < 𝑗

Rate bound for sequential recovery LRCs
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[3] J. Singer, “A theorem in finite projective geometry and some applications to number theory,” Trans. Amer. Math. Soc., vol. 43,
no. 3, pp. 377–385, 1938.

• One of the well-known planar difference set comes from Singer with parameters
(𝑣 = 𝑞2 + 𝑞 + 1, 𝑘 = 𝑞 + 1, 𝜆 = 1) when 𝑞 is a power of prime [2].

Does there exist an 𝑠-mark Golomb ruler such that the positive
integer 𝑚 = 𝑠2 − 𝑠 + 1 satisfies the three conditions in Theorem 1?

number of integers in set 

= 𝑠

𝑚 = 𝑠2 − 𝑠 + 1

= 𝑞 + 1 2 − 𝑞 + 1 + 1 = 𝑞2 + 𝑞 + 1 = 𝑣

𝑚
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• One of the well-known planar difference set comes from Singer with parameters
(𝑣 = 𝑞2 + 𝑞 + 1, 𝑘 = 𝑞 + 1, 𝜆 = 1) when 𝑞 is a power of prime [2].

[3] J. Singer, “A theorem in finite projective geometry and some applications to number theory,” Trans. Amer. Math. Soc., vol. 43,
no. 3, pp. 377–385, 1938.
[4] C. J. Colbourne and J. H. Dinitz, Handbook of Combinatorial Designs, 2nd ed. Boca Raton, FL, USA: CRC Press, 2007.

Construction (18.28 in [3])         𝑺𝒊𝒏𝒈𝒆𝒓 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝒔𝒆𝒕𝒔.

Let 𝛼 be a generator of the multiplicative group of Ϝ𝑞𝑛 .

Then the set of integers 𝑖 ∶ 0 ≤ 𝑖 <
𝑞𝑛−1

𝑞−1
, trace𝑛/1 𝛼𝑖 = 0 modulo 

𝑞𝑛−1

𝑞−1

form a (cyclic) difference set . 
Here, the 𝑡𝑟𝑎𝑐𝑒 denotes the usual trace function

trace𝑛/1 𝛽 = ෍
𝑖=0

𝑛−1

𝛽𝑞𝑖

from Ϝ𝑞𝑛 onto Ϝ𝑞 .

Example: (13, 4, 1) Singer difference set



Golomb rulers from Singer Difference sets

2025-02-13 33

Find a set of integers 𝑖 ∶ 0 ≤ 𝑖 < 13, trace3/1 𝛼𝑖 = 0 modulo 13

𝐺𝐹 33 = 𝐹27 = 𝐹3 𝛼 using 𝛼 which is a root of  𝑥3 + 2𝑥2 + 1

𝑖 𝛼𝑖 Tr(𝛼𝑖)

∗ 0 0

0 1 0

1 𝛼 1

2 𝛼2 1

3 𝛼2 + 2 1

4 𝛼2 + 2𝛼 + 2 0

5 2𝛼 + 2 2

6 2𝛼2 + 2𝛼 1

7 𝛼2 + 1 1

8 𝛼2 + 𝛼 + 2 2

9 2𝛼2 + 2𝛼 + 2 1

10 𝛼2 + 2𝛼 + 1 0

11 𝛼 + 2 1

12 2𝛼2 + 2𝛼 0

⋮

25 2𝛼2 + 2 0

𝟎, 𝟒, 𝟏𝟎, 𝟏𝟐 is a (13, 4, 1) Singer difference set

0 1

2

3

4

5

67
8

9

10

11

12

Example: (13, 4, 1) Singer difference set
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a-Shifts and t-Multiples are also difference sets
for any a mod v and any t mod v with (t,v)=1

𝟎, 𝟒, 𝟏𝟎, 𝟏𝟐

0 1

2

3

4

5

67
8

9

10

11

12

0

1

2
3 4

5

6

7

8

910
11

12

𝟎, 𝟐, 𝟑, 𝟕

+𝟐
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(example) (13, 4, 1) Singer difference set

𝟎, 𝟐, 𝟑, 𝟕 is a (13, 4, 1) Singer difference set

2
1

4

3
5

7

𝑔1 = 0 𝑔2 = 2 𝑔3 = 3 𝑔4 = 7

4-mark Golomb ruler  {0,2,3,7}

0

1

2
3 4

5

6

7

8

910
11

12

integers mod 13                                                           straight integers
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(example) (13, 4, 1) Singer difference set

− 0 2 3 7

0 0 11 10 6

2 2 0 12 8

3 3 1 0 9

7 7 5 4 0

4-mark Golomb ruler  {0,2,3,7}

The sum of any two of them can never be 13.

second condition is satisfied !

▪ 𝑔𝑗 − 𝑔𝑖 ≠ −(𝑔𝑙 − 𝑔𝑘) (mod m) for 𝑖 < 𝑗 and 𝑘 < 𝑙 but not necessarily 𝑖 ≠ 𝑘
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𝒔
Golomb rulers

from Singer difference sets [3][4]
𝒎 𝒏 𝒌 code rate = rate bound (1)

4
0, 2, 3, 7 𝑔𝑠 < 𝟏𝟑 < 2𝑔𝑠

52 27 0.51923
0, 1, 4, 6 2𝑔𝑠 < 𝟏𝟑

5 0, 2, 7, 8, 11 𝑔𝑠 < 𝟐𝟏 < 2𝑔𝑠 105 64 0.60952

6
0, 1, 4, 10, 12, 17

𝑔𝑠 < 𝟑𝟏 < 2𝑔𝑠 186 124 0.67204
0, 1, 3, 8, 12, 18

8
0, 1, 3, 13, 32, 36, 43, 52

𝑔𝑠 < 𝟓𝟕 < 2𝑔𝑠 456 343 0.75219
0, 4, 5, 17, 19, 25, 28, 35

9
0, 1, 3, 7, 15, 31, 36, 54, 63

𝑔𝑠 < 𝟕𝟑 < 2𝑔𝑠 657 512 0.77930
0, 2, 10, 24, 25, 29, 36, 42, 45

TABLE II.  EXAMPLES OF VARIOUS OPTIMAL 5-SEQ LRCS FROM Theorem 1 USING  GOLOMB RULERS FROM SINGER DIFFERENCE SETS

𝑛 = 𝑠𝑚

𝑘 = 𝑠 − 2 𝑚 + 1

𝑟 = 𝑠 − 1

𝑡 = 2.
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Concluding Remark 

In this paper,

• We propose some new 5-seq LRCs with availability 𝑡 = 2 based on Golomb rulers.

• The proposed 5-seq LRCs can repair up to 5 erased symbols within 3 repair time.

• We proved that the above codes are rate-optimal when the Golomb rulers derived

from Singer difference sets are appropriately used.
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Thank you for listening 

We are about to submit the manuscript of this presentation and many more into some journal.
Therefore, please do not record this presentation, please!


