ON THE EXISTENCE OF SOME CYCLIC HADAMARD DIFFERENCE SETS

Jeong-Heon Kim, Hong-Yeop Song Computer & Electrical Engineering Dept. Yonsei Univ.

APCC/OECC'99

October 19 - 21 1999, Beijing, China

(v, k, λ) -cyclic difference sets

Definition: Let D be a k-subset of Z_v . One calls D a (v, k, λ) -cyclic difference set if for any non-zero $d \in Z_v$, there are exactly λ pairs of (x, y), where $x, y \in D$ such that $d \equiv x - y$ (mod v).

Definition: D is called a **cyclic Hadamard difference set (CHDS)** if v = 4n - 1, k = 2n - 1, $\lambda = n - 1$ for some positive integer n.

Remark: If a CHDS is given, one can obtain a balanced binary sequence with ideal autocorrelation (so called, Hadamard sequence).

Hadamard sequences

Definition If a binary sequence $\{b(t)\}$ of length V has the following property, it is called a Hadamard sequence.

- 1. Balanced property : # of 1's # of 0's = 1.
- 2. Ideal autocorrelation property:

$$\sum_{t=0}^{v-1} (-1)^{b(t)+b(t+\tau)} = \begin{cases} v & \text{if } \tau = 0 \mod v \\ -1 & \text{otherwise} \end{cases}$$

Example 1: (11,5,2)-CHDS

D =
$$\{1, 3, 4, 5, 9\}$$

 $1 = 4 - 3 = 5 - 4$
 $2 = 3 - 1 = 5 - 3$
 $5 = 3 - 9 = 9 - 4$
etc.

Classification of CHDS

- a) V = 4n 1 is a prime.
- b) v = p(p+2), where both p and p+2 are prime.
- c) $v = 2^{t} 1$, for $t = 2, 3, 4, \cdots$.

Main conjecture: If a CHDS exists, *v* must be one of the above three types.

Summary of recent results

- Baumert (1971): v < 1000 are confirmed except for the six cases v = 399, 495, 627, 651, 783, 975.
- **Song & Golomb (1994)**: V < 10000 are confirmed except for the 17 cases V = 1295, 1599, 1935, 3135, 3439, 4355, 4623, 5775, 7395, 7743, 8227, 8463, 8591, 8835, 9135, 9215, 9423.
- In this paper: The smallest four cases V = 1295, 1599, 1935, 3135 are confirmed that none exists with these values of V.

Multiplier of a (v, k, λ) -CDS

Let $D = \{d_1, d_2, \cdots, d_k\}$ be a (v, k, λ) -CDS. Then so is $s + D = \{s + d_i \mid 1 \le i \le k\}$ for any $s \in \mathbb{Z}_v$ and if (t, v) = 1, so is $tD = \{t \cdot d_i \mid 1 \le i \le k\}$.

If tD = D + s for some $s \in \mathbb{Z}_v$, then t is called a **multiplier** of D.

Remark: If a (v, k, λ) -CDS with multiplier t exists, then there exists some shift D' = D + s of D such that D' = tD'.

==> There exists a CDS which is a union of some cyclotomic cosets of integers mod *V*.

Multiplier of (15,7,3)-CDS

- Assume there exists a (15,7,3)-CDS.
- Hypothetical multiplier is 2.

Cyclotomic cosets

$$C_1 = \{0\}$$
 $C_2 = \{5,10\}$
 $C_3 = \{1,2,4,8\}$
 $C_4 = \{3,6,9,12\}$
 $C_5 = \{7,11,13,14\}$

Candidates for CDS:
CDS is a union of some cosets

$$D_{1} = C_{1} \bigcup C_{2} \bigcup C_{3}$$

$$D_{2} = C_{1} \bigcup C_{2} \bigcup C_{4}$$

$$CDSs$$

$$D_{3} = C_{1} \bigcup C_{2} \bigcup C_{5}$$

Theorem 1 [Baumert] If a (v, k, λ) -cyclic difference set exists, then for every divisor w of v, there exist integers b_i $(i = 0, 1, 2, \dots, w - 1)$ satisfying the diophantine equations

$$\sum_{\substack{i=0\\w-1\\ w-1}}^{w-1}b_i=k$$

$$\sum_{\substack{i=0\\w-1\\ j=0}}^{w-1}b_i^2=k-\lambda+v\lambda/w$$
for $1 \le j \le w-1$

Here, the subscript i-j is taken modulo W.

Remark: By this theorem, we can give a restriction to the number of residues modulo each divisor that must belong to D if D exists.

Basic procedure of non-existence proof

- 1. Find a multiplier and cyclotomic cosets for each divisor of *V*.
- 2. For each prime divisor, find solutions for the three equations in Theorem 1.
- 3. For each composite divisor, find solutions which satisfy the three equations and relations with its prime divisors.

Non-existence proof of (175,87,43)-CDS

Multiplier is 11.

< cyclotomic cosets mod divisors >

$$175 = 5^2 \times 7$$
.

For the divisor W = 5:

$$\sum_{i=0}^{4} b_{i} = 87,$$

$$\sum_{i=0}^{4} b_{i}^{2} = 1549,$$

$$\sum_{i=0}^{4} b_{i}b_{i+j} = 1505$$
, where $1 \le j \le$

and $0 \le b_i \le 35$.

Solutions:

b_0	b_1	b_2	b_3	b_4
13	17	17	19	21
13	17	21	17	19
17	13	19	17	21
17	13	21	19	17
19	13	17	21	17
21	13	17	17	19

For the divisor W = 7:

$$\sum_{i=0}^{6} c_{i} = 87,$$

$$\sum_{i=0}^{6} c_{i}^{2} = 1119,$$

$$\sum_{i=0}^{6} c_{i}c_{i+j} = 1075, \text{ where } 1 \leq j \leq$$

and $0 \le c_{0,}c_{1,}c_{2}, \dots, c_{6} \le 25.$

Solution:

C_0	c_1	\mathcal{C}_2	C_3	${\cal C}_{4}$	\mathcal{C}_{5}	C 6
9	11	11	15	11	15	15
12	10	10	12	10	12	12
18	11	11	12	11	12	12

For the divisor $W = 7 \times 5 = 35$:

$$\sum_{i=0}^{34} d_i = 87,$$

$$\sum_{i=0}^{34} d_i^2 = 259,$$

$$\sum_{i=0}^{34} d_i d_{i+j} = 215, \quad \text{where } 1 \le j \le 34,$$

and $0 \le d_0, d_1, \dots, d_{34} \le 5$.

$$\begin{array}{lll} b_0 &= d_0 + 3 (d_5 + d_{15}) \\ b_1 &= d_{21} + 3 (d_6 + d_1) \\ b_2 &= d_7 + 3 (d_{12} + d_2) \\ b_3 &= d_{28} + 3 (d_3 + d_8) \\ b_4 &= d_{14} + 3 (d_{19} + d_4) \end{array}$$

$$\begin{array}{lll} c_0 &= d_0 + d_{21} + d_7 + d_{28} + d_{14} \\ c_1 &= d_5 + d_6 + d_{12} + d_3 + d_{19} \\ c_2 &= d_{15} + d_1 + d_2 + d_8 + d_{14} \end{array}$$

There is **no solution** for d_i 's !!!

==> There is no (175,87,43)-CDS.

Search results

V	Multiplier	# of cyclotomic cosets	# of solutions for divisors
1295	16	155	w = 5: 2 w = 37 : 1 $w = 5 \times 37 = 185 : 0$
1599	25	176	w = 3 : 2 w = 41 : 1 $w = 3 \times 41 = 123$: 0
1935	16	175	w = 3 : 1 w = 43 : 10 $w = 3 \times 43 = 129$: 0
3135	49	189	w = 3 : 5 w = 5 : 1 $w = 3 \times 5 = 15$: 0

Conclusion

• It is confirmed that there is no CHDS with V < 3439 none of the three types.

• remaining 14 cases: 3439, 4355, 4623, 5775, 7395, 7743, 8227, 8463, 8591, 8835, 9135, 9215, 9423.