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Introduction

In this talk, by using cyclic relative difference sets, we  introduce construction of 

two types of binary sequences with favourable autocorrelation.

1. Balanced binary sequence 𝒔 with 5-level even autocorrelation 

𝐶
𝒔
(𝜏
)

Shift 𝜏

Example
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Introduction

In this talk, by using cyclic relative difference sets, we  introduce construction of 

two types of binary sequences with favourable autocorrelation.

1. Balanced binary sequence 𝒔 with 5-level even autocorrelation 

𝐶
𝒔
(𝜏
)

Shift 𝜏

Example

Negative peak at the 
half of the period 
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Introduction

In this talk, by using cyclic relative difference sets, we  introduce construction of 

two types of binary sequences with favourable autocorrelation.

2. Binary sequence 𝒕 with optimal odd autocorrelation property

(optimal in terms of minimizing maximum of sidelobe magnitude).

𝐶
𝑡𝑜
𝑑
𝑑
(𝜏
)

Shift 𝜏

𝟐
𝟐

Example

Maximum of 
sidelobe magnitude
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Relative Difference Set

Def. Relative Difference Set (RDS)

Let 𝑢, 𝑣, 𝑘, 𝜆 be positive integers. 

A (𝑢, 𝑣, 𝑘, 𝜆)-RDS 𝐷 is a 𝑘-subset {𝑑1, 𝑑2, … , 𝑑𝑘} ⊂ ℤ𝑢𝑣 

satisfying the following: For 𝑑 ∈ ℤ𝑢𝑣,

𝐷 ∩ (𝑑 + 𝐷) =

𝜆 if 𝑑 ∈ ℤ𝑢𝑣\𝑢ℤ𝑢𝑣,

0 if 𝑑 ∈ 𝑢ℤ𝑢𝑣\{0},

𝑘 if 𝑑 = 0.
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Relative Difference Set

Def. Relative Difference Set (RDS)

Let 𝑢, 𝑣, 𝑘, 𝜆 be positive integers. 

A (𝑢, 𝑣, 𝑘, 𝜆)-RDS 𝐷 is a 𝑘-subset {𝑑1, 𝑑2, … , 𝑑𝑘} ⊂ ℤ𝑢𝑣 

satisfying the following: For 𝑑 ∈ ℤ𝑢𝑣,

𝐷 ∩ (𝑑 + 𝐷) =

𝜆 if 𝑑 ∈ ℤ𝑢𝑣\𝑢ℤ𝑢𝑣,

0 if 𝑑 ∈ 𝑢ℤ𝑢𝑣\{0},

𝑘 if 𝑑 = 0.
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Partition from Relative Difference Set

In this talk, we are interested in 𝑢, 𝑣 = 2, 𝑘 = 𝑢 − 1, 𝜆 =
𝑢

2
− 1 -RDSs

Prop. 

Let 𝐷 be a (𝑢, 2, 𝑢 − 1,
𝑢

2
− 1)-RDS, Then, ℤ2𝑢 can be decomposed into the 

following disjoint union:

ℤ2𝑢 = 𝐷 ∪ 𝑢 + 𝐷 ∪ 𝑧 ∪ 𝑢 + 𝑧 ,

for some 𝑧.
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Partition from Relative Difference Set

In this talk, we are interested in 𝑢, 𝑣 = 2, 𝑘 = 𝑢 − 1, 𝜆 =
𝑢

2
− 1 -RDSs

Prop. 

Let 𝐷 be a (𝑢, 2, 𝑢 − 1,
𝑢

2
− 1)-RDS. Then, ℤ2𝑢 can be decomposed into the 

following disjoint union:

ℤ2𝑢 = 𝐷 ∪ 𝑢 + 𝐷 ∪ 𝑧 ∪ 𝑢 + 𝑧 ,

for some 𝑧 ∉ 𝐷 ∪ 𝑢 + 𝐷 .

Proof) 𝐷 ∩ 𝑢 + 𝐷 is empty by definition.
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Partition from Relative Difference Set

In this talk, we are interested in 𝑢, 𝑣 = 2, 𝑘 = 𝑢 − 1, 𝜆 =
𝑢

2
− 1 -RDSs

Prop. 

Let 𝐷 be a (𝑢, 2, 𝑢 − 1,
𝑢

2
− 1)-RDS. Then, ℤ2𝑢 can be decomposed into the 

following disjoint union:

ℤ2𝑢 = 𝐷 ∪ 𝑢 + 𝐷 ∪ 𝑧 ∪ 𝑢 + 𝑧 ,

for some 𝑧 ∉ 𝐷 ∪ 𝑢 + 𝐷 .

Proof) 𝐷 ∩ 𝑢 + 𝐷 is empty by definition.

𝑢 − 1
elements

𝑢 − 1
elements

1 element 1 element
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Example

Consider  (10,2,9,4)-RDS 

𝐷 = {0,1,2,3,6,7,9,14,18}

ℤ20 = 𝐷 ∪ 10 + 𝐷 ∪ 𝑧 ∪ 10 + 𝑧 ,

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

ℤ20
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Example

Consider  (10,2,9,4)-RDS 

𝐷 = {0,1,2,3,6,7,9,14,18}

ℤ20 = 𝐷 ∪ 10 + 𝐷 ∪ 𝑧 ∪ 10 + 𝑧 ,

0 1 2 3 4 5 6 7 8 9
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ℤ20
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Example

Consider  (10,2,9,4)-RDS 

𝐷 = {0,1,2,3,6,7,9,14,18}

ℤ20 = 𝐷 ∪ 10 + 𝐷 ∪ 𝑧 ∪ 10 + 𝑧 ,

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

ℤ20
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Example

Consider  (10,2,9,4)-RDS 

𝐷 = {0,1,2,3,6,7,9,14,18}

ℤ20 = 𝐷 ∪ 10 + 𝐷 ∪ 𝑧 ∪ 10 + 𝑧 ,

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

ℤ20
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Example

Consider  (10,2,9,4)-RDS 

𝐷 = {0,1,2,3,6,7,9,14,18}

ℤ20 = 𝐷 ∪ 10 + 𝐷 ∪ 𝑧 ∪ 10 + 𝑧 ,

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

ℤ20

To make binary sequence, 
let assign

0 1
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Main construction

Let 𝐷 be a (𝑢, 2, 𝑢 − 1,
𝑢

2
− 1)-RDS. Then

ℤ2𝑢 = 𝐷 ∪ 𝑢 + 𝐷 ∪ 𝑧 ∪ 𝑢 + 𝑧 .

Construct a binary sequence 𝒔 = 𝑠 𝑖 | 𝑖 = 0,1, … , 2𝑢 − 1 as follows:

𝑠 𝑖 = ቊ
0, 𝑖 ∈ 𝐷 ∪ {𝑧}

1, 𝑖 ∈ 𝑢 + 𝐷 ∪ {𝑢 + 𝑧}

Thm. the periodic (even) autocorrelation of 𝒔 becomes:

𝐶𝒔 𝜏 =

2𝑢, 𝜏 = 0
−2𝑢, 𝜏 = 𝑢
4, 𝜏 ∈ −𝑧 + 𝑢 + 𝐷 ∩ (𝑧 − 𝑢 − 𝐷)
−4, 𝜏 ∈ (−𝑧 + 𝐷) ∩ (𝑧 − 𝐷)
0, otherwise.
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Main construction

Let 𝐷 be a (𝑢, 2, 𝑢 − 1,
𝑢

2
− 1)-RDS. Then

ℤ2𝑢 = 𝐷 ∪ 𝑢 + 𝐷 ∪ 𝑧 ∪ 𝑢 + 𝑧 .

Construct a binary sequence 𝒔 = 𝑠 𝑖 | 𝑖 = 0,1, … , 2𝑢 − 1 as follows:

𝑠 𝑖 = ቊ
0, 𝑖 ∈ 𝐷 ∪ {𝑧}

1, 𝑖 ∈ 𝑢 + 𝐷 ∪ {𝑢 + 𝑧}

Thm. the periodic (even) autocorrelation of 𝒔 becomes:

𝐶𝒔 𝜏 =

2𝑢, 𝜏 = 0
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−4, 𝜏 ∈ (−𝑧 + 𝐷) ∩ (𝑧 − 𝐷)
0, otherwise.
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Main construction

Let 𝐷 be a (𝑢, 2, 𝑢 − 1,
𝑢

2
− 1)-RDS. Then

ℤ2𝑢 = 𝐷 ∪ 𝑢 + 𝐷 ∪ 𝑧 ∪ 𝑢 + 𝑧 .

Construct a binary sequence 𝒔 = 𝑠 𝑖 | 𝑖 = 0,1, … , 2𝑢 − 1 as follows:

𝑠 𝑖 = ቊ
0, 𝑖 ∈ 𝐷 ∪ {𝑧}

1, 𝑖 ∈ 𝑢 + 𝐷 ∪ {𝑢 + 𝑧}

Thm. The periodic (even) autocorrelation of 𝒔 becomes:

𝐶𝒔 𝜏 =

2𝑢, 𝜏 = 0
−2𝑢, 𝜏 = 𝑢
4, 𝜏 ∈ −𝑧 + 𝑢 + 𝐷 ∩ (𝑧 − 𝑢 − 𝐷)
−4, 𝜏 ∈ (−𝑧 + 𝐷) ∩ (𝑧 − 𝐷)
0, otherwise.
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Proof

𝑠 𝑖 = ቊ
0, 𝑖 ∈ 𝐷 ∪ {𝑧}

1, 𝑖 ∈ 𝑢 + 𝐷 ∪ {𝑢 + 𝑧}

𝐶𝑠 𝜏 = 

𝑖∈ℤ2𝑢

−1 𝑠 𝑖 +𝑠 𝑖+𝜏

=

𝑖∈𝐷

−1 𝑠 𝑖 +𝑠(𝑖+𝜏) + 

𝑖∈(𝑢+𝐷)

−1 𝑠 𝑖 +𝑠(𝑖+𝜏) + 

𝑖∈{𝑧,𝑢+𝑧}

−1 𝑠 𝑖 +𝑠(𝑖+𝜏)
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Proof

𝑠 𝑖 = ቊ
0, 𝑖 ∈ 𝐷 ∪ {𝑧}

1, 𝑖 ∈ 𝑢 + 𝐷 ∪ {𝑢 + 𝑧}

𝐶𝑠 𝜏 = 

𝑖∈ℤ2𝑢
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𝑖∈(𝑢+𝐷)

−1 𝑠 𝑖 +𝑠(𝑖+𝜏) + 

𝑖∈{𝑧,𝑢+𝑧}

−1 𝑠 𝑖 +𝑠(𝑖+𝜏)
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Proof

𝑠 𝑖 = ቊ
0, 𝑖 ∈ 𝐷 ∪ {𝑧}

1, 𝑖 ∈ 𝑢 + 𝐷 ∪ {𝑢 + 𝑧}



𝑖∈𝐷

−1 𝑠 𝑖 +𝑠(𝑖+𝜏) = 
𝑖∈𝐷

𝑖+𝜏∈𝐷

−1 𝑠 𝑖 +𝑠 𝑖+𝜏 + 
𝑖∈𝐷

𝑖+𝜏∈(𝑢+𝐷)

−1 𝑠 𝑖 +𝑠 𝑖+𝜏 + 
𝑖∈𝐷

𝑖+𝜏∈{𝑧,𝑢+𝑧}

−1 𝑠 𝑖 +𝑠 𝑖+𝜏
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Proof

𝑠 𝑖 = ቊ
0, 𝑖 ∈ 𝐷 ∪ {𝑧}

1, 𝑖 ∈ 𝑢 + 𝐷 ∪ {𝑢 + 𝑧}



𝑖∈𝐷

−1 𝑠 𝑖 +𝑠(𝑖+𝜏) = 
𝑖∈𝐷

𝑖+𝜏∈𝐷
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𝑖∈𝐷

𝑖+𝜏∈{𝑧,𝑢+𝑧}

−1 𝑠 𝑖 +𝑠 𝑖+𝜏


𝑖∈𝐷

𝑖+𝜏∈𝐷

−1 𝑠 𝑖 +𝑠 𝑖+𝜏 = 
𝑖∈𝐷

𝑖+𝜏∈𝐷

−1 0 = 𝑫 ∩ (−𝝉 + 𝑫) = |(𝝉 + 𝑫) ∩ 𝑫| ≜ 𝚫𝐃 𝝉


𝑖∈𝐷

𝑖+𝜏∈(𝑢+𝐷)

−1 𝑠 𝑖 +𝑠 𝑖+𝜏 = 
𝑖∈𝐷

𝑖+𝜏∈(𝑢+𝐷)

−1 1 = − 𝑫 ∩ (−𝝉 + 𝒖 + 𝑫) = −Δ𝐷(𝑢 − 𝜏)
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Proof

𝑠 𝑖 = ቊ
0, 𝑖 ∈ 𝐷 ∪ {𝑧}
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Proof

𝑠 𝑖 = ቊ
0, 𝑖 ∈ 𝐷 ∪ {𝑧}

1, 𝑖 ∈ 𝑢 + 𝐷 ∪ {𝑢 + 𝑧}



𝑖∈𝐷

−1 𝑠 𝑖 +𝑠(𝑖+𝜏) = 
𝑖∈𝐷

𝑖+𝜏∈𝐷

−1 𝑠 𝑖 +𝑠 𝑖+𝜏 + 
𝑖∈𝐷
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𝑖∈𝐷
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𝑖∈𝐷

𝑖+𝜏∈𝐷

−1 0 = 𝐷 ∩ (−𝜏 + 𝐷) = |(𝜏 + 𝐷) ∩ 𝐷| ≜ 𝛥𝐷 𝜏


𝑖∈𝐷

𝑖+𝜏∈(𝑢+𝐷)

−1 𝑠 𝑖 +𝑠 𝑖+𝜏 = 
𝑖∈𝐷

𝑖+𝜏∈(𝑢+𝐷)

−1 1 = − 𝐷 ∩ (−𝜏 + 𝑢 + 𝐷) = −Δ𝐷(𝑢 − 𝜏)
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Proof

𝑠 𝑖 = ቊ
0, 𝑖 ∈ 𝐷 ∪ {𝑧}

1, 𝑖 ∈ 𝑢 + 𝐷 ∪ {𝑢 + 𝑧}



𝑖∈𝐷

−1 𝑠 𝑖 +𝑠(𝑖+𝜏) = Δ𝐷 𝜏 − Δ𝐷(𝑢 − 𝜏) + 
𝑖∈𝐷

𝑖+𝜏∈{𝑧,𝑢+𝑧}

−1 𝑠 𝑖 +𝑠 𝑖+𝜏


𝑖∈𝐷

𝑖+𝜏∈𝐷

−1 𝑠 𝑖 +𝑠 𝑖+𝜏 = 
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−1 1 = − 𝐷 ∩ (−𝜏 + 𝑢 + 𝐷) = −Δ𝐷(𝑢 − 𝜏)
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Proof

𝑠 𝑖 = ቊ
0, 𝑖 ∈ 𝐷 ∪ {𝑧}

1, 𝑖 ∈ 𝑢 + 𝐷 ∪ {𝑢 + 𝑧}

𝐶𝑠 𝜏 = 

𝑖∈𝐷

−1 𝑠 𝑖 +𝑠(𝑖+𝜏) + 

𝑖∈(𝑢+𝐷)

−1 𝑠 𝑖 +𝑠(𝑖+𝜏) + 

𝑖∈{𝑧,𝑢+𝑧}

−1 𝑠 𝑖 +𝑠(𝑖+𝜏)

Recall that
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Proof

𝑠 𝑖 = ቊ
0, 𝑖 ∈ 𝐷 ∪ {𝑧}

1, 𝑖 ∈ 𝑢 + 𝐷 ∪ {𝑢 + 𝑧}

𝐶𝑠 𝜏 =

Δ𝐷(𝜏) − Δ𝐷(𝑢 − 𝜏)

+ 
𝑖∈𝐷

𝑖+𝜏∈{𝑧,𝑢+𝑧}

−1 𝑠 𝑖 +𝑠 𝑖+𝜏 + 

𝑖∈(𝑢+𝐷)

−1 𝑠 𝑖 +𝑠(𝑖+𝜏) + 
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−1 𝑠 𝑖 +𝑠(𝑖+𝜏)



28

Proof

𝑠 𝑖 = ቊ
0, 𝑖 ∈ 𝐷 ∪ {𝑧}

1, 𝑖 ∈ 𝑢 + 𝐷 ∪ {𝑢 + 𝑧}

𝐶𝑠 𝜏 =

Δ𝐷(𝜏) − Δ𝐷(𝑢 − 𝜏)

+ 
𝑖∈𝐷

𝑖+𝜏∈{𝑧,𝑢+𝑧}

−1 𝑠 𝑖 +𝑠 𝑖+𝜏 + 

𝑖∈(𝑢+𝐷)

−1 𝑠 𝑖 +𝑠(𝑖+𝜏) + 

𝑖∈{𝑧,𝑢+𝑧}

−1 𝑠 𝑖 +𝑠(𝑖+𝜏)

Similarly,
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Proof

𝑠 𝑖 = ቊ
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Δ𝐷(𝜏) − Δ𝐷(𝑢 − 𝜏)
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𝑖∈𝐷

𝑖+𝜏∈{𝑧,𝑢+𝑧}

−1 𝑠 𝑖 +𝑠 𝑖+𝜏 +

Δ𝐷(𝜏) − Δ𝐷(𝑢 + 𝜏)

+ 
𝑖∈(𝑢+𝐷)

𝑖+𝜏∈{𝑧,𝑢+𝑧}

−1 𝑠 𝑖 +𝑠 𝑖+𝜏 + 

𝑖∈{𝑧,𝑢+𝑧}

−1 𝑠 𝑖 +𝑠(𝑖+𝜏)

Similarly,
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1, 𝑖 ∈ 𝑢 + 𝐷 ∪ {𝑢 + 𝑧}

𝐶𝑠 𝜏 =

Δ𝐷(𝜏) − Δ𝐷(𝑢 − 𝜏)

+ 
𝑖∈𝐷

𝑖+𝜏∈{𝑧,𝑢+𝑧}

−1 𝑠 𝑖 +𝑠 𝑖+𝜏 +

Δ𝐷(𝜏) − Δ𝐷(𝑢 + 𝜏)

+ 
𝑖∈(𝑢+𝐷)

𝑖+𝜏∈{𝑧,𝑢+𝑧}

−1 𝑠 𝑖 +𝑠 𝑖+𝜏 + 

𝑖∈{𝑧,𝑢+𝑧}

−1 𝑠 𝑖 +𝑠(𝑖+𝜏)

Rearrange it  as a simple form  
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Proof

𝑠 𝑖 = ቊ
0, 𝑖 ∈ 𝐷 ∪ {𝑧}

1, 𝑖 ∈ 𝑢 + 𝐷 ∪ {𝑢 + 𝑧}

𝐶𝑠 𝜏 = 2Δ𝐷 𝜏 − Δ𝐷 𝑢 − 𝜏 − Δ𝐷 𝑢 + 𝜏 + 

𝑖∈𝐷∪ 𝑢+𝐷

𝑖+𝜏∈ 𝑧,𝑢+𝑧

−1 𝑠 𝑖 +𝑠 𝑖+𝜏 + 

𝑖∈ 𝑧,𝑢+𝑧

−1 𝑠 𝑖 +𝑠 𝑖+𝜏

Rearrange it  as a simple form  
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Proof

𝑠 𝑖 = ቊ
0, 𝑖 ∈ 𝐷 ∪ {𝑧}

1, 𝑖 ∈ 𝑢 + 𝐷 ∪ {𝑢 + 𝑧}

𝐶𝑠 𝜏 = 2Δ𝐷 𝜏 − Δ𝐷 𝑢 − 𝜏 − Δ𝐷 𝑢 + 𝜏 + 

𝑖∈𝐷∪ 𝑢+𝐷

𝑖+𝜏∈ 𝑧,𝑢+𝑧

−1 𝑠 𝑖 +𝑠 𝑖+𝜏 + 

𝑖∈ 𝑧,𝑢+𝑧

−1 𝑠 𝑖 +𝑠 𝑖+𝜏

We omit the proof of trivial case where 𝝉 = 𝟎 or 𝝉 = 𝒖.

Now we consider the case where 𝝉 ≠ 𝟎, 𝒖.
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Proof

𝑠 𝑖 = ቊ
0, 𝑖 ∈ 𝐷 ∪ {𝑧}

1, 𝑖 ∈ 𝑢 + 𝐷 ∪ {𝑢 + 𝑧}

For the case when 𝝉 ≠ 𝟎, 𝒖

𝐶𝑠 𝜏 = 2Δ𝐷 𝜏 − Δ𝐷 𝑢 − 𝜏 − Δ𝐷 𝑢 + 𝜏 + 

𝑖∈𝐷∪ 𝑢+𝐷

𝑖+𝜏∈ 𝑧,𝑢+𝑧

−1 𝑠 𝑖 +𝑠 𝑖+𝜏 + 

𝑖∈ 𝑧,𝑢+𝑧

−1 𝑠 𝑖 +𝑠 𝑖+𝜏
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Proof

𝑠 𝑖 = ቊ
0, 𝑖 ∈ 𝐷 ∪ {𝑧}

1, 𝑖 ∈ 𝑢 + 𝐷 ∪ {𝑢 + 𝑧}

For the case when 𝝉 ≠ 𝟎, 𝒖

𝐶𝑠 𝜏 = 2Δ𝐷 𝜏 − Δ𝐷 𝑢 − 𝜏 − Δ𝐷 𝑢 + 𝜏 + 

𝑖∈𝐷∪ 𝑢+𝐷

𝑖+𝜏∈ 𝑧,𝑢+𝑧

−1 𝑠 𝑖 +𝑠 𝑖+𝜏 + 

𝑖∈ 𝑧,𝑢+𝑧

−1 𝑠 𝑖 +𝑠 𝑖+𝜏

Recall that

Δ𝐷 𝑑 = ቐ
𝜆 if 𝑑 ∈ ℤ𝑢𝑣\𝑢ℤ𝑢𝑣 ,
0 if 𝑑 ∈ 𝑢ℤ𝑢𝑣\{0},
𝑘 if 𝑑 = 0

(= 𝟐𝝀) (= 𝝀) (= 𝝀)
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Proof

𝑠 𝑖 = ቊ
0, 𝑖 ∈ 𝐷 ∪ {𝑧}

1, 𝑖 ∈ 𝑢 + 𝐷 ∪ {𝑢 + 𝑧}

For the case when 𝝉 ≠ 𝟎, 𝒖

𝐶𝑠 𝜏 = 2Δ𝐷 𝜏 − Δ𝐷 𝑢 − 𝜏 − Δ𝐷 𝑢 + 𝜏 + 

𝑖∈𝐷∪ 𝑢+𝐷

𝑖+𝜏∈ 𝑧,𝑢+𝑧

−1 𝑠 𝑖 +𝑠 𝑖+𝜏 + 

𝑖∈ 𝑧,𝑢+𝑧

−1 𝑠 𝑖 +𝑠 𝑖+𝜏

= 

𝑖∈𝐷∪ 𝑢+𝐷
𝑖+𝜏∈ 𝑧,𝑢+𝑧

−1 𝑠 𝑖 +𝑠 𝑖+𝜏 + 

𝑖∈ 𝑧,𝑢+𝑧

−1 𝑠 𝑖 +𝑠 𝑖+𝜏

(= 𝟐𝝀) (= 𝝀) (= 𝝀)
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Proof

𝑠 𝑖 = ቊ
0, 𝑖 ∈ 𝐷 ∪ {𝑧}

1, 𝑖 ∈ 𝑢 + 𝐷 ∪ {𝑢 + 𝑧}

For the case when 𝝉 ≠ 𝟎, 𝒖

𝐶𝑠 𝜏 = 2Δ𝐷 𝜏 − Δ𝐷 𝑢 − 𝜏 − Δ𝐷 𝑢 + 𝜏 + 

𝑖∈𝐷∪ 𝑢+𝐷

𝑖+𝜏∈ 𝑧,𝑢+𝑧

−1 𝑠 𝑖 +𝑠 𝑖+𝜏 + 

𝑖∈ 𝑧,𝑢+𝑧

−1 𝑠 𝑖 +𝑠 𝑖+𝜏

= 

𝑖∈𝐷∪ 𝑢+𝐷
𝑖+𝜏∈ 𝑧,𝑢+𝑧

−1 𝑠 𝑖 +𝑠 𝑖+𝜏 + 

𝑖∈ 𝑧,𝑢+𝑧

−1 𝑠 𝑖 +𝑠 𝑖+𝜏

= 

𝑖+𝜏∈{𝑧,𝑢+𝑧}

−1 𝑠 𝑖 +𝑠 𝑖+𝜏 + 

𝑖∈ 𝑧,𝑢+𝑧

−1 𝑠 𝑖 +𝑠 𝑖+𝜏

Note that

𝑧 − 𝜏, 𝑢 + 𝑧 − 𝜏 ⊂ (𝐷 ∩ (𝑢 + 𝐷))
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Proof

𝑠 𝑖 = ቊ
0, 𝑖 ∈ 𝐷 ∪ {𝑧}

1, 𝑖 ∈ 𝑢 + 𝐷 ∪ {𝑢 + 𝑧}

For the case when 𝝉 ≠ 𝟎, 𝒖

𝐶𝑠 𝜏 = 2Δ𝐷 𝜏 − Δ𝐷 𝑢 − 𝜏 − Δ𝐷 𝑢 + 𝜏 + 

𝑖∈𝐷∪ 𝑢+𝐷

𝑖+𝜏∈ 𝑧,𝑢+𝑧

−1 𝑠 𝑖 +𝑠 𝑖+𝜏 + 

𝑖∈ 𝑧,𝑢+𝑧

−1 𝑠 𝑖 +𝑠 𝑖+𝜏

= 

𝑖∈𝐷∪ 𝑢+𝐷
𝑖+𝜏∈ 𝑧,𝑢+𝑧

−1 𝑠 𝑖 +𝑠 𝑖+𝜏 + 

𝑖∈ 𝑧,𝑢+𝑧

−1 𝑠 𝑖 +𝑠 𝑖+𝜏

= 

𝑖+𝜏∈{𝑧,𝑢+𝑧}

−1 𝑠 𝑖 +𝑠 𝑖+𝜏 + 

𝑖∈ 𝑧,𝑢+𝑧

−1 𝑠 𝑖 +𝑠 𝑖+𝜏 = 

𝑖∈ 𝑧,𝑢+𝑧,𝑧−𝜏,𝑢+𝑧−𝜏

−1 𝑠 𝑖 +𝑠 𝑖+𝜏
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QED

𝑠 𝑖 = ቊ
0, 𝑖 ∈ 𝐷 ∪ {𝑧}

1, 𝑖 ∈ 𝑢 + 𝐷 ∪ {𝑢 + 𝑧}

For the case when 𝝉 ≠ 𝟎, 𝒖

𝐶𝑠 𝜏 = 

𝑖∈ 𝑧,𝑢+𝑧,𝑧−𝜏,𝑢+𝑧−𝜏

−1 𝑠 𝑖 +𝑠 𝑖+𝜏

= −1 𝑠 𝑧 +𝑠 𝑧+𝜏 + −1 𝑠 𝑢+𝑧 +𝑠 𝑢+𝑧+𝜏 + −1 𝑠 𝑧−𝜏 +𝑠 𝑧 + −1 𝑠 𝑢−𝑧−𝜏 +𝑠 𝑢+𝑧
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QED

𝑠 𝑖 = ቊ
0, 𝑖 ∈ 𝐷 ∪ {𝑧}

1, 𝑖 ∈ 𝑢 + 𝐷 ∪ {𝑢 + 𝑧}

For the case when 𝝉 ≠ 𝟎, 𝒖

𝐶𝑠 𝜏 = 

𝑖∈ 𝑧,𝑢+𝑧,𝑧−𝜏,𝑢+𝑧−𝜏

−1 𝑠 𝑖 +𝑠 𝑖+𝜏

= −1 𝑠 𝑧+𝜏 + −1 𝑠 𝑢+𝑧+𝜏 +1 + −1 𝑠 𝑧−𝜏 + −1 𝑠 𝑢−𝑧−𝜏 +1
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QED

𝑠 𝑖 = ቊ
0, 𝑖 ∈ 𝐷 ∪ {𝑧}

1, 𝑖 ∈ 𝑢 + 𝐷 ∪ {𝑢 + 𝑧}

For the case when 𝝉 ≠ 𝟎, 𝒖

𝐶𝑠 𝜏 = 

𝑖∈ 𝑧,𝑢+𝑧,𝑧−𝜏,𝑢+𝑧−𝜏

−1 𝑠 𝑖 +𝑠 𝑖+𝜏

= −1 𝑠 𝑧+𝜏 + −1 𝑠 𝑢+𝑧+𝜏 +1 + −1 𝑠 𝑧−𝜏 + −1 𝑠 𝑢−𝑧−𝜏 +1

The above value is depend on whether 

each 𝒛 + 𝝉, 𝒖 + 𝒛 + 𝝉, 𝒛 − 𝝉, or 𝐮 − 𝐳 − 𝝉 is in 𝑫 or (𝒖 + 𝑫). 

Note that each of them is not equal to 𝒛 or 𝒖 + 𝒛.

We calculate each case and it is summarized as shown on the next page.
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QED

𝑠 𝑖 = ቊ
0, 𝑖 ∈ 𝐷 ∪ {𝑧}

1, 𝑖 ∈ 𝑢 + 𝐷 ∪ {𝑢 + 𝑧}

For the case when 𝝉 ≠ 𝟎, 𝒖

𝐶𝑠 𝜏 = 

𝑖∈ 𝑧,𝑢+𝑧,𝑧−𝜏,𝑢+𝑧−𝜏

−1 𝑠 𝑖 +𝑠 𝑖+𝜏

= −1 𝑠 𝑧+𝜏 + −1 𝑠 𝑢+𝑧+𝜏 +1 + −1 𝑠 𝑧−𝜏 + −1 𝑠 𝑢−𝑧−𝜏 +1

= ቐ
−4, 𝑧 − 𝜏, 𝑧 + 𝜏 ∈ 𝐷
4, 𝑧 − 𝜏, 𝑧 + 𝜏 ∈ (𝑢 + 𝐷)
0, otherwise
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Example

Consider  (10,2,9,4)-RDS 

𝐷 = {0,1,2,3,6,7,9,14,18}

ℤ20 = 𝐷 ∪ 10 + 𝐷 ∪ 𝑧 ∪ 10 + 𝑧 ,

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

To make binary sequence, 
let assign

0 1
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Example

Consider  (10,2,9,4)-RDS 

𝐷 = {0,1,2,3,6,7,9,14,18}

ℤ20 = 𝐷 ∪ 10 + 𝐷 ∪ 𝑧 ∪ 10 + 𝑧 ,

0, 0, 0, 0, 1, 0, 0, 0, 1, 0,

1, 1, 1, 1, 0, 1, 1, 1, 0, 1

To make binary sequence, 
let assign

0 1

𝒔 = {

}
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Example

Consider  (10,2,9,4)-RDS 

𝐷 = {0,1,2,3,6,7,9,14,18}

ℤ20 = 𝐷 ∪ 10 + 𝐷 ∪ 𝒛 ∪ 𝟏𝟎 + 𝒛 ,

0, 0, 0, 0, 1, 0, 0, 0, 1, 0,

1, 1, 1, 1, 0, 1, 1, 1, 0, 1

Note that these two symbols can be interchanged 
depending on whether 𝒛 = 𝟓 or 𝟏𝟓.

To make binary sequence, 
let assign

0 1

𝒔 = {

}
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Example

0, 0, 0, 0, 1, 0, 0, 0, 1, 0,

1, 1, 1, 1, 0, 1, 1, 1, 0, 1

𝒔 = {

}
𝐶
𝒔
(𝜏
)

Shift 𝜏

5-level
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Example

𝐶
𝒔
(𝜏
)

Shift 𝜏

5-level

Observation:
Complement

0, 0, 0, 0, 1, 0, 0, 0, 1, 0,

1, 1, 1, 1, 0, 1, 1, 1, 0, 1

𝒔 = {

}
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Example

𝐶
𝒔
(𝜏
)

Shift 𝜏

5-level

Let’s observe 
the sequence 
consisting of
only one side

0, 0, 0, 0, 1, 0, 0, 0, 1, 0,

1, 1, 1, 1, 0, 1, 1, 1, 0, 1

𝒔 = {

}
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Main construction

From the previous sequence 𝒔 of period 2𝑢, 

construct a sequence 𝒕 of period 𝑢 as follows: For 𝑖 = 0, 1, … , 𝑢 − 1

𝑡 𝑖 = 𝑠 𝑖 .

Thm. The periodic odd autocorrelation of t becomes:

𝐶𝒕
𝑜𝑑𝑑 𝜏 = ൞

𝑢, 𝜏 = 0
2, 𝜏 ∈ −𝑧 + 𝑢 + 𝐷 ∩ (𝑧 − 𝑢 − 𝐷)
−2, 𝜏 ∈ (−𝑧 + 𝐷) ∩ (𝑧 − 𝐷)
0, otherwise.
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Main construction

From the previous sequence 𝒔 of period 2𝑢, 

construct a sequence 𝒕 of period 𝑢 as follows: For 𝑖 = 0, 1, … , 𝑢 − 1

𝑡 𝑖 = 𝑠 𝑖 .

Thm. The periodic odd autocorrelation of t becomes:

𝐶𝒕
𝑜𝑑𝑑 𝜏 = ൞

𝑢, 𝜏 = 0
2, 𝜏 ∈ −𝑧 + 𝑢 + 𝐷 ∩ (𝑧 − 𝑢 − 𝐷)
−2, 𝜏 ∈ (−𝑧 + 𝐷) ∩ (𝑧 − 𝐷)
0, otherwise.
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Main construction

From the previous sequence 𝒔 of period 2𝑢, 

construct a sequence 𝒕 of period 𝑢 as follows: For 𝑖 = 0, 1, … , 𝑢 − 1

𝑡 𝑖 = 𝑠 𝑖 .

Thm. The periodic odd autocorrelation of t becomes:

𝐶𝒕
𝑜𝑑𝑑 𝜏 = ൞

𝑢, 𝜏 = 0
2, 𝜏 ∈ −𝑧 + 𝑢 + 𝐷 ∩ (𝑧 − 𝑢 − 𝐷)
−2, 𝜏 ∈ (−𝑧 + 𝐷) ∩ (𝑧 − 𝐷)
0, otherwise.

Recall that
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Example

0, 0, 0, 0, 1, 0, 0, 0, 1, 0,

1, 1, 1, 1, 0, 1, 1, 1, 0, 1

𝒔 = {

}
𝐶
𝒔
(𝜏
)

Shift 𝜏

Cut 𝒔 in half
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Example

0, 0, 0, 0, 1, 0, 0, 0, 1, 0𝒕 = { }

𝐶
𝑡𝑜
𝑑
𝑑
(𝜏
)

Shift 𝜏

Cut 𝒔 in half

Odd correlation of 𝒕
Is half of the even 
correlation of s
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Relation between our construction 
and other known construction

For odd prime power 𝑞, the modified Krengel sequence [12,14] is the

following binary sequence 𝒙 of period (𝑞 + 1)

𝑥 𝑖 = ቐ
1, log𝛽 Tr(𝛼

𝑖) is odd

0, Tr 𝛼𝑖 = 0 or else log𝛽 Tr(𝛼
𝑖) is even.

This binary sequence 𝒙 can be constructed by our construction from the

following (𝑞 + 1,2, 𝑞,
𝑞−1

2
)-RDS

𝐷 ≜ 𝑖 ∈ ℤ2 𝑞+1 Tr 𝛼𝑖 ≠ 0 and log𝛽 Tr 𝛼𝑖 is even}

* 𝐓𝐫: trace function from 𝔽𝒒𝟐 to 𝔽𝒒
* 𝜷: primitive element of 𝔽𝒒

[12] E. I. Krengel, “Almost-perfect and odd-perfect ternary sequences,” SETA 2004.
[14] H.D. Luke, H. D. Schotten and H. Hadinejad-Mahram, “Binary and quadriphase sequences with optimal 
autocorrelation properties,” IEEE Trans. Inf. Theory, 2003
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Relation between our construction 
and other known construction

For odd prime power 𝑞, the modified Krengel sequence [12,14] is the following

binary sequence 𝒙 of period (𝑞 + 1)

𝑥 𝑖 = ቐ
1, log𝛽 Tr(𝛼

𝑖) is odd

0, Tr 𝛼𝑖 = 0 or else log𝛽 Tr(𝛼
𝑖) is even.

This binary sequence 𝒙 can be constructed by our construction from the

following (𝑞 + 1,2, 𝑞,
𝑞−1

2
)-RDS

𝐷 ≜ 𝑖 ∈ ℤ2 𝑞+1 Tr 𝛼𝑖 ≠ 0 and log𝛽 Tr 𝛼𝑖 is even}

* 𝐓𝐫: trace function from 𝔽𝒒𝟐 to 𝔽𝒒
* 𝜷: primitive element of 𝔽𝒒

[12] E. I. Krengel, “Almost-perfect and odd-perfect ternary sequences,” SETA 2004.
[14] H.D. Luke, H. D. Schotten and H. Hadinejad-Mahram, “Binary and quadriphase sequences with optimal 
autocorrelation properties,” IEEE Trans. Inf. Theory, 2003



55

Relation between our construction 
and other known construction

For odd prime power 𝑞, the modified Krengel sequence [12,14] is the following

binary sequence 𝒙 of period (𝒒 + 𝟏)

𝑥 𝑖 = ቐ
1, log𝛽 Tr(𝛼

𝑖) is odd

0, Tr 𝛼𝑖 = 0 or else log𝛽 Tr(𝛼
𝑖) is even.

Another variation: Binary NTU sequence 𝒚 of period 𝟐(𝒒 + 𝟏) [16]

𝑦 𝑖 = ቐ
1, log𝛽 Tr(𝛼

𝑖) is odd

0, Tr 𝛼𝑖 = 0 or else log𝛽 Tr(𝛼
𝑖) is even.

* 𝐓𝐫: trace function from 𝔽𝒒𝟐 to 𝔽𝒒
* 𝜷: primitive element of 𝔽𝒒

[16] Y. Nogami, K. Tada, and S. Uehara, “A geometric sequence binarized with Legendre symbol over odd 
characteristic field and its properties,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2014.
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Concluding Remarks

All the known parameters of the (𝑢, 𝑣 = 2, 𝑘 = 𝑢 − 1, 𝜆 =
𝑢

2
− 1) -RDS are

𝑢 = 𝑞 + 1 for odd prime power 𝑞.

Indeed, our construction gives some binary sequences of period 𝑞 + 1 with

optimal odd autocorrelation.

By exhaustive search, we confirm that all binary sequences of period 𝑞 + 1 with

optimal odd autocorrelation property for 𝑞 = 3,5,7,11,13,17,19.

We conjecture that it is the only way of getting a binary sequence of period 𝑞 + 1

with optimal odd autocorrelation for odd prime power 𝑞.
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Concluding Remarks

All the known parameters of the (𝑢, 𝑣 = 2, 𝑘 = 𝑢 − 1, 𝜆 =
𝑢

2
− 1) -RDS are

𝑢 = 𝑞 + 1 for odd prime power 𝑞.

Indeed, our construction gives some binary sequences of period 𝑞 + 1 with
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