

Performance Comparison using various LDPC coded and CSK modulated Schemes

Daekyung Kim and Hong-Yeop Song

(presenter: Gangsan Kim)

Channel Coding Lab. Dept. of Electrical and Electronic Engineering, Yonsei Univ.

The 3rd International Conference on M³ IT Convergence

Code shift Keying (CSK) modulation maps several bits to some cyclically shifted version of pseudo-random noise (PRN) code representing one modulation symbol.

For centimeter-level augmentation services (CLAS) in quasi-zenith satellite sysem (QZSS), RS-CSK is used. Recently, we reveal that LDPC-CSK has better performance[4].

[4] H. Cho, J.M. Ahn, J.H. Noh, H.-Y. Song, "Some new LDPC-coded orthogonal modulation schemes for high data rate transmissions in navigation satellite systems," ICT Express (2024).

This paper finds the optimal combination of (code rate, symbol mapping order)

for given data rate and chip rate of PRN code.

We measure C/N_0 vs FER for each scheme.

 C/N_0 is commonly used to evaluate performance in satellite navigation system. Relationship between E_b/N_0 and C/N_0 can be written as

$$C / N_0 = E_b / N_0 + 10 \log_{10} R_b$$
,

where R_b : data rate.

Simulation

We simulate the following scheme for m = 6, 7, 8, 9, 10.

Simulation

We simulate the following scheme for m = 6, 7, 8, 9, 10.

Gain of each scheme from s₁

Simulation (CSK only)

FER performance (AWGN)

Simulation (CSK only)

FER performance (AWGN)

Gain of each scheme from S1

Gain of each scheme from s₁

Gain of each scheme from s₁

LDPC&CSK gain comes from sum of LDPC gain and CSK gain

Conclusion

There is some trade-off relation between redundancy of LDPC code and order of CSK modulation.

In our simulation, [800,500] LDPC & CSK(m = 8) is best.

Further considerations in future work:

- Use state-of-art LDPC code.
- Experiment with various LDPC codes and various PRN codes.

END