

1

Bit extension method for improving dynamic degradation of digital chaotic maps

Hyojeong Choi, Gangsan Kim, Hongjun Noh*, Hong-Yeop Song

dept. of Electrical and Electronic Engineering Yonsei University Seoul, Republic of Korea

> dept. of C4I R&D Center LIG Nex1* Gyeonggi-do, Korea

I. Introduction

II. Digital chaotic maps

- 1) Logistic map and Tent map
- 2) Analysis metrics
- III. Bit extension method for Single chaotic map
- IV. Bit extension method for Combined chaotic map
- V. Concluding Remark

Introduction

• Chaotic maps are nonlinear functions that are very sensitive to initial values. Even small differences in initial values can lead to completely different sequences.

• Because of this property, changing the initial value can easily generate infinitely different sequences.

 Therefore, in DSSS (Direct Sequence Spread Spectrum) systems, chaotic sequences are considered instead of PN (Pseudo Random Noise) codes, which have fixed periods and limited sequence sets [2], [5], [6].

Introduction

- When implemented in digital systems, chaotic maps defined in the real number domain face dynamic degradation.
- This dynamic degradation can result in chaotic maps having short periods or converging to specific values [4], [7].
- This paper introduces a bit extension method to improve dynamic degradation.
- We apply the bit extension method to single and combined chaotic maps to analyze their periods and randomness.

I. Introduction

II. Digital chaotic maps

- 1) Logistic map and Tent map
- 2) Analysis metrics
- III. Bit extension method for Single chaotic maps
- IV. Bit extension method for Combined chaotic maps
- V. Concluding Remark

Chaotic Maps

Chaotic state when $\mu = 4$

 $x_{n+1} = \mu x_n (1 - x_n)$

*

Logistic map

where, $0 < \mu \leq 4$ and $x_n \in [0,1]$.

✤ Tent map

$$x_{n+1} = \begin{cases} ax_n, & 0 \le x_n \le 1/2 \\ a(1-x_n), & 1/2 \le x_n \le 1 \end{cases}$$

where, $1 < a \le 2$ and $x_n \in [0,1]$.

Chaotic state when a = 2

Typical orbit of a digital chaotic sequence

Random properties

- Shannon Entropy (SE)
- Approximate Entropy (ApEn)
- Permutation Entropy (PE)

- > Random properties
 - Shannon Entropy (SE)
 - Approximate Entropy (ApEn) [11]
 - Permutation Entropy (PE) [1]

✓ When the probability mass function of the discrete random variable X is p(x), SE is defined as,

$$H(X) = -\sum p(x)\log_2 p(x)$$

✓ Cannot distinguish complexity differences in sequences

> ex)
$$p(x = 1) = 0.5$$
, $p(x = 0) = 0.5$
 $X_1 = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & X_2 = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$
 $H(X_1) = H(X_2) = -\sum_{i=1}^{2} p(x = i) \log p(x = i) = -2(0.5 * \log 0.5)$

- > Random properties
 - Shannon Entropy (SE)
 - Approximate Entropy (ApEn) [11]
 - Permutation Entropy (PE) [1]

✓ Measures the likelihood that patterns of length m will remain similar in the next window of length m + 1 (in logarithmic form)

 $\operatorname{ApEn}(m) = \Phi^m - \Phi^{m+1}$

✓ Higher ApEn indicates more complex, less predictable sequences.

²⁰²⁵⁻⁰²⁻¹³ [11] S. M. Pincus, "Approximate entropy as a measure of system complexity," Proc. Nat. Acad. Sci. USA, vol. 88, pp. 2297–2301, Mar. 1991.

10

> Random properties

- Shannon Entropy (SE)
- Approximate Entropy (ApEn) [11]
- Permutation Entropy (PE) [1]
- ✓ Measuring complexity by considering the order of elements within a sequence

ex) x = (479106113) and n=3

Consider the size of elements

 $(4,7,9) \text{ represent the permutation } \pi_1 = (1,2,3).$ $(7,9,10) \text{ represent the permutation } \pi_1 = (1,2,3).$ $(9,10,6) \text{ represent the permutation } \pi_4 = (2,3,1)$ \vdots $p(\pi_1) = \frac{2}{5}, \quad p(\pi_2) = 0, \quad p(\pi_3) = \frac{1}{5}, \quad p(\pi_4) = \frac{2}{5}, \quad p(\pi_5) = 0, \quad p(\pi_6) = 0$ $PE(n) = -\sum_{i=1}^{n!} p(\pi_i) \log p(\pi_i)$

[1] C. Bandt and B. Pompe, "Permutation entropy: A natural complexity measure for time series," Phys. Rev. Lett., vol. 88, no. 17, Apr. 2002.

- I. Introduction
- II. Digital chaotic maps
 - 1) Logistic map and Tent map
 - 2) Analysis metrics
- III. Bit extension method for Single chaotic maps
- IV. Bit extension method for Combined chaotic maps
- V. Concluding Remark

Bit extension method

- Select a computation precision to implement the chaotic map using fixed-point arithmetic
- Compute x_{i+1} at the *i*-th iteration under the selected precision (n-bit)

$$\mu x_i (1 - x_i) = x_{i+1} = \mathbf{0}.$$

• A specific bit of x_{i+1} is extended into a *i*-th bit of m-sequence.

Proceed to the next iteration with **o**.

Bit extension method

1) Logistic map / Tent map (fixed-point arithmetic)

2) Bit extension method for Single chaotic map

3) Bit extension method for Combined chaotic map

Single Chaotic map + Bit extension method

1) Logistic map

Precision	Initial Value	Fractal parameter μ	Fractal parameter μ Cycle length Ap		PE	SE
8	0.00390625 (0.00000001) ₂	3.9921875 (11.1111110) ₂	4 0.0001 2.0025		2.0025	2.0025
9	0.001953125 $(0.000000001)_2$	3.998046875 (11.11111111) ₂	7	0.1980	2.8085	2.8085

2) Logistic map + Bit extension method

Precision	Initial Value	Fractal parameter μ Extended bit		Cycle length	ApEn	PE	SE
8	0.00390625 (0.00000001) ₂	3.9921875 (11.1111110) ₂	3	765 (255 × 3)	0.5826	5.1127	5.9136
9	0.001953125 $(0.000000001)_2$	3.998046875 (11.11111111) ₂	9	1022 (511 × 2)	0.6343	5.9085	7.3156

Single Chaotic map + Bit extension method

1) Tent map

Precision	Initial Value	Fractal parameter a	Cycle length ApEn		PE	SE
8	0.00390625 (0.0000001) ₂	1.96875 (1.11111000) ₂	33	0.2869	4.9837	5.0473
9	0.001953125 $(0.000000001)_2$	1.984375 (1.11111000) ₂	65	0.9334	5.5799	6.0250

2) Tent map + Bit extension method

Precision	Initial Value	Fractal parameter <i>a</i> Extended bit Cy		Cycle length	ApEn	PE	SE
8	0.00390625 (0.00000001) ₂	1.96875 (1.11111000) ₂	2	1020 (255 × 4)	1.3895	7.8367	7.8063
9	0.001953125 $(0.000000001)_2$	1.984375 (1.11111000) ₂	2	2555 (511 × 5)	1.3343	8.0524	8.8404

Combined Chaotic map + Bit extension

2) Logistic map +Bit extension method

Precision	Initial Value	Fractal parameter μ Extended bit C		Cycle length	ApEn	PE	SE
8	0.00390625 $(0.00000001)_2$	3.9921875 (11.1111110) ₂	3	765 (255 × 3)	0.5826	5.1127	5.9136
9	0.001953125 $(0.000000001)_2$	3.998046875 (11.11111111) ₂	9	1022 (511 × 2)	0.6343	5.9085	7.3156

2) Tent map +Bit extension method

Precision	Initial Value	Fractal parameter a	parameter <i>a</i> Extended bit		ApEn	PE	SE
8	0.00390625 $(0.00000001)_2$	1.96875 (1.11111000) ₂	2	1020 (255 × 4)	1.3895	7.8367	7.8063
9	0.001953125 $(0.000000001)_2$	$\frac{1.984375}{(1.111111000)_2}$	2	2555 (511 × 5)	1.3343	8.0524	8.8404

3) combined map +Bit extension method

Combined Chaotic map + Bit extension

2) Logistic map +Bit extension method

Precision	Initial Value	Fractal parameter μ	Fractal parameter μ Extended bit C		ApEn	PE	SE
8	0.00390625 $(0.00000001)_2$	3.9921875 (11.1111110) ₂	3	765 (255 × 3)	0.5826	5.1127	5.9136
9	0.001953125 $(0.000000001)_2$	3.998046875 (11.11111111) ₂	9	1022 (511 × 2)	0.6343	5.9085	7.3156

2) Tent map +Bit extension method

Precision	Initial Value	Fractal parameter <i>a</i> Extended bit Cy		Cycle length	ApEn	PE	SE
8	0.00390625 $(0.00000001)_2$	1.96875 (1.11111000) ₂	2	1020 (255 × 4)	1.3895	7.8367	7.8063
9	0.001953125 (0.000000001) ₂	1.984375 (1.11111000) ₂	2	2555 (511 × 5)	1.3343	8.0524	8.8404

3) combined map +Bit extension method

Precision		Fractal parameter		Extended bit		Cuelo longth	Anco	DE	SE
	initial value	μ	а	Logistic	Tent	Cycle length	Apen	PE	SE
8	0.00390625 $(0.00000001)_2$	3.9921875 (11.1111110) ₂	1.96875 (1.11111000) ₂	3	2	9435	1.2584	7.6826	7.7944
9	0.001953125 $(0.000000001)_2$	3.998046875 (11.1111111) ₂	$\frac{1.984375}{(1.111111000)_2}$	9	2	18396	1.1546	7.5294	8.8026

Contents

- I. Introduction
- II. Digital chaotic maps
 - 1) Logistic map and Tent map
 - 2) Analysis metrics
- III. Bit extension method for Single chaotic maps
- IV. Bit extension method for Combined chaotic maps
- V. Concluding Remark

Concluding remark

• In this paper, we introduce a bit extension method to improve the dynamic degradation that occurs when implementing chaotic maps in digital systems.

• Applying the bit extension method to the combined chaotic map results in long periods and good random characteristics, even with low bit precision.

• Determining which bits to extend and what threshold to set in combined chaotic maps to achieve better period and randomness remains as future work.

Thank you for listening