Hadamard matrices from the Multiplication Table of the Finite Fields

*Min-Ho Shin, **Jong-Seon No, *Hong-Yeop Song

- *Yonsei University of Seoul Korea
- **Seoul National University of Seoul Korea

Contents

▶ Introduction

- Hadamard matrices
- binary m-sequences
- Relation

Constructions

- Theorem1. Construction with canonical basis
- Theorem2. Construction with any basis

▶ Remarks

Introduction

▶ Hadamard matrix

• **Definition**: A *Hadamard matrix* of order *n* is an *n* by *n* matrix with entries +1 or -1 such that

$$HH^T = nI$$

• **Example 1.** Hadamard matrix of order 8

+	+	+	+	+	+	+	+
+	_	+	_	+	_	+	_
+	+	_	_	+	+	_	_
+	_	_	+	+	_	1	+
+	+	+	+	_	_	-	_
+	_	+	_	_	+	-	+
+	+	_	_	_	_	+	+
+	_	-	+	_	+	+	_

Note1 Any two rows of *H* are orthogonal.

(this property does not change if we permute rows or columns or if we multiply some rows or columns by -1)

Note2 Two such Hadamard matrices are called *equivalent*.

"+" denotes +1, "-" denotes -1

▶ Relation between Hadamard matrices and ECC

- All the rows of a Hadamard matrix of order n form an <u>orthogonal</u>
 <u>code</u> of length n and size n.
- All the rows of a Hadamard matrix of order n and their complements form a **biorthogonal code** of length n and size 2n
- All the rows of a normalized Hadamard matrix of order n without their first component form a **simplex code** of length n-1 and size n

m-sequences

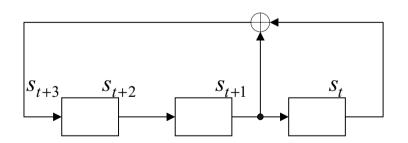
- **Definition**: Maximal length LFSR(Linear Feedback Shift Register) sequences
- A linear recurring sequence (degree m) over F_q with recurrence relation

$$S_t = \sum_{i=0}^{m-1} a_i S_{t-i} \qquad a_i \in F_q$$

can be generated by an m-stage LFSR with a characteristic polynomial

$$f(x) = x^m - a_1 x^{m-1} - a_2 x^{m-2} - \dots - a_m$$

• **Example 2.** Generation of a binary *m*-sequence with 3-stage LFSR



• linear recurrence (degree 3)

$$s_t = s_{t-2} + s_{t-3}$$

• characteristic polynomial

$$f(x) = x^3 + x + 1$$

• s_t has a period $2^3 - 1 = 7$

▶ m-sequences(cont'd)

- Facts
 - An LFSR produces an m-sequence over GF(2) if and only if its characteristic polynomial is primitive.
 - *m*-sequences are analytically represented by the *trace function*

$$s_t = \operatorname{tr}_1^n(\theta \alpha^t)$$
 $\theta \in \operatorname{GF}(2^n) - \{0\}$
 $\alpha : \text{primitive in } \operatorname{GF}(2^n)$

where trace function $tr(\cdot)$ maps $GF(2^n)$ into GF(2)

- Properties(selected)
 - Ideal autocorrelation property(period N)

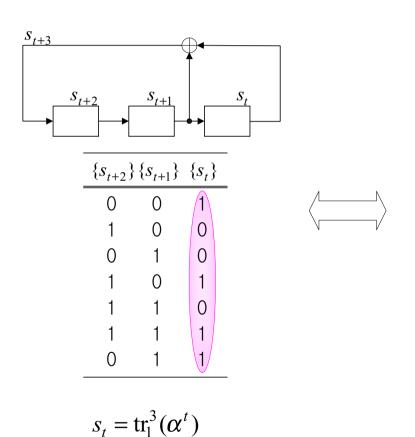
$$\phi_b(\tau) = \sum_{t=0}^{N-1} (-1)^{s_t + s_{t+\tau}} = \begin{cases} N & \tau \equiv 0 \mod N \\ -1 & \tau \not\equiv 0 \mod N \end{cases}$$

- <u>Cycle and add property</u>: the sum of *m*-sequence $\{s_t\}$ and its τ -shift $\{s_{t+\tau}\}$ is another shift $\{s_{t+\tau'(\tau)}\}$ of the same *m*-sequence

$$\mathbf{s}_{t} + \mathbf{s}_{t+\tau} = \mathbf{s}_{t+\tau'(\tau)} \iff \operatorname{tr}_{1}^{n}(\theta\alpha^{t}) + \operatorname{tr}_{1}^{n}(\theta\alpha^{t+\tau}) = \operatorname{tr}_{1}^{n}(\theta\alpha^{t+\tau'(\tau)})$$

▶ Relation between Hadamard matrices and binary *m*-sequences

• Example 3. *m*-sequence (period $2^3 - 1$) vs Hadamard matrix(order 2^3)



Cyclic Hadamard matrix (order 8)

0	0	0	0	0	0	0	0
0	1	0	0	1	0	1	1
0	0	0	1	0	1	1	1
0	0	1	0	1	1	1	0
0	1	0	1	1	1	0	0
0	0	1	1	1	0	0	1
0	1	1	1	0	0	1	0
0	1	1	0	0	1	0	1

$$("0" \Leftrightarrow +1, "1" \Leftrightarrow -1)$$

▶ Relation (in general)

• $\{s_t\}$ binary *m*-sequence of period $N = 2^n - 1$

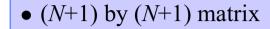
$$s_0$$
 s_1 s_2 \cdots s_{N-2} s_{N-1}

• With trace representation

$$s_t = \operatorname{tr}_1^n(\theta \alpha^t)$$

$$\theta \in \mathrm{GF}(2^n) - \{0\}$$

 α : primitive in $GF(2^n)$



$$H = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & C & \\ 0 & & & \end{bmatrix}$$

- matrix C: N by N <u>circulant</u> matrix generated by cyclic shift of $\{s_t\}$
- With trace representation

$$C = (c_{ij}) \quad 0 \le i, j \le N - 1$$
$$c_{ij} = \operatorname{tr}_{1}^{n}(\theta \alpha^{i+j})$$

- By autocorrelation property of the *m*-sequence, dot product of any two rows of *N* by *N* matrix *C* is -1(after changing "0" to +1, "1" to -1)
- Hence (N+1) by (N+1) matrix H defined as above is a Hadamard matrix of order 2^n

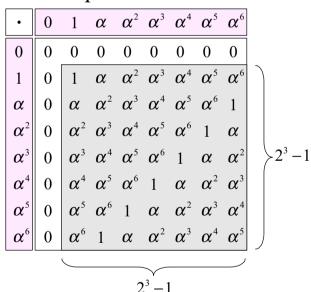
Constructions

- \blacktriangleright Construction in GF(2^n)
 - **Example 4.** From multiplication table of $GF(2^3)$ with canonical basis. α : primitive in $GF(2^3)$ satisfying $\alpha^3 + \alpha + 1 = 0$

Field generation

Power	Polynomial	Vector							
0	0	0 0 0							
1	1								
α	α	0 1 0							
α^2	α^2	0 0 1							
α^3	$1+\alpha$	1 1 0							
α^4	$\alpha + \alpha^2$	0 1 1							
α^5 α^6	$1+\alpha+\alpha^2$	$oxed{1}$							
α^{6}	$1+\alpha^2$	1 0 1							

Multiplication table



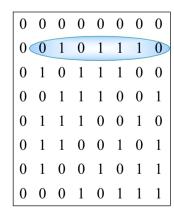
- **Note 1** each successive sequence (vector represented) from α^i th coefficient is <u>cyclically equivalent m-sequence</u>.
- **Note 2** (2^3-1) by (2^3-1) matrix is circulant.

• Example 4. (cont'd)

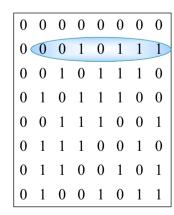
Hadamard matrices from the vector represented multiplication table of canonical basis

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
 0	0	0	1	0	0	0	1	0	0	0	1	1	1	0	0	1	1	1	1	1	1	0	1
0	0	0	0	1	0	0	0	1	1	1	0	0	1	1	1	1	1	1	0	1	1	0	0
 0	0	0	0	0	1	1	1	0	0	1	1	1	1	1	1	0	1	1	0	0	0	1	0
0	0	0	1	1	0	0	1	1	1	1	1	1	0	1	1	0	0	0	1	0	0	0	1
0	0	0	0	1	1	1	1	1	1	0	1	1	0	0	0	1	0	0	0	1	1	1	0
 0	0	0	1	1	1	1	0	1	1	0	0	0	1	0	0	0	1	1	1	0	0	1	1
0	0	0	1/	0	1	1	0	0	0/	1	0	0	0	1	1/	1	0	0/	1	1	1/	1	1

$$S_t = \operatorname{tr}_1^3(\boldsymbol{\alpha}^t)$$



$$S_{t+2} = \operatorname{tr}_1^3(\boldsymbol{\alpha}^{t+2})$$



$$S_{t+1} = \operatorname{tr}_1^3(\alpha^{t+1})$$

▶ Theorem 1.

Let $GF(2^n)$ be the finite field with 2^n elements, and $\alpha \in GF(2^n)$ be a primitive element.

Consider the multiplication table of $GF(2^n)$ with borders

$$0, 1, \alpha, \alpha^{2}, \cdots, \alpha^{2^{n}-3}, \alpha^{2^{n}-2}$$
.

Let the entries of this table be vector-represented over GF(2) using the canonical basis

$$1, \alpha, \alpha^2, \cdots, \alpha^{n-1}$$
.

For $i = 0, 1, \dots, n-1$, let H_i be the $2^n \times 2^n$ matrix obtained by taking the *i*-th component of all the entries of the multiplication table.

Then, these n matrices H_i are Hadamard matrices, and they are equivalent only by column permutation

• **Example 6.** From multiplication table of $GF(2^3)$ with arbitrary basis. α : primitive in $GF(2^3)$ satisfying $\alpha^3 + \alpha + 1 = 0$ (change coordinates from canonical basis to the β basis)

 $\forall x \in GF(2^3)$ by canonical basis expansion and β basis expansion

$$x = x_0 + x_1 \alpha + x_2 \alpha^2$$
 $x = x_0' \beta_0 + x_1' \beta_1 + x_2' \beta_2$

Define binary row vectors $\underline{\mathbf{x}}$ and $\underline{\mathbf{x}'}$ by

$$\underline{\mathbf{x}} = (x_0, x_1, x_2) \qquad \underline{\mathbf{x}'} = (x'_0, x'_1, x'_2)$$

Let β basis arbitrary

$$\beta_0 = \alpha^5 = 1 + \alpha + \alpha^2$$

$$\beta_1 = \alpha^4 = \alpha + \alpha^2$$

$$\beta_2 = \alpha^3 = 1 + \alpha$$

From above relation define 3 by 3 matrices A and B

$$B = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \qquad A = B^{-1} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

Then we can change the coordinates as follows

$$\underline{\mathbf{x}'} = \underline{\mathbf{x}} A \qquad \underline{\mathbf{x}} = \underline{\mathbf{x}'} B$$

Example 6. (cont'd)

Canonical basis

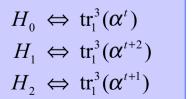
Λ			

Power	1	α	α^2
0	0	0	0
1	1	0	0
α	0	1	0
α^2	0	0	1
α^3	1	1	0
α^4	0	1	1
α^{5}	1	1	1
α^{6}	1	0	1

$$\underline{\mathbf{x'}} = \underline{\mathbf{x}} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

β basis

α^{5}	α^4	α^3	Check
0	0	0	0
1	1	0	$\alpha^5 + \alpha^4 = 1$
1	1	1	$\alpha^5 + \alpha^4 + \alpha^3 = \alpha$
1	0	1	$\alpha^5 + \alpha^3 = \alpha^2$
0	0	1	$\alpha^3 = \alpha^3$
0	1	0	$\alpha^4 = \alpha^4$
1	0	0	$\alpha^5 = \alpha^5$
0	1	1	$\alpha^4 + \alpha^3 = \alpha^6$



$$tr_{1}^{3}(\alpha^{t}) + tr_{1}^{3}(\alpha^{t+2}) + tr_{1}^{3}(\alpha^{t+1}) = tr_{1}^{3}(\alpha^{t+5}) \iff H'_{0}$$

$$tr_{1}^{3}(\alpha^{t}) + tr_{1}^{3}(\alpha^{t+2}) = tr_{1}^{3}(\alpha^{t+6}) \iff H'_{1}$$

$$tr_{1}^{3}(\alpha^{t+2}) + tr_{1}^{3}(\alpha^{t+1}) = tr_{1}^{3}(\alpha^{t+4}) \iff H'_{2}$$

• Example 6. (cont'd)

Canonical basis

β basis

Note the transformation matrix
$$U$$
 is a permutation matrix. i.e $UU^T = I$
Hence two such matrices are equivalent by row(or column) permutation

▶ Theorem 2.

Representation of elements in $GF(2^n)$ in Theorem 1 can be done by using any basis.

Relation of Hadamard matrices and *m*-sequences (canonical basis)

$$H_i \Leftrightarrow \operatorname{tr}_1^n(\theta_i \alpha^t)$$

The β basis can be represented by

$$\beta_j = \sum_{i=0}^{n-1} b_{ij} \alpha^i, \quad b_{ij} \in \{0, 1\}, \quad 0 \le j \le n-1$$

Define the *n* by *n* matrix $B = (b_{ii})$ and $A = B^{-1} = (a_{ii})$

Then H'_i are related to the *m*-sequences as follows (β basis)

$$H'_{i} \Leftrightarrow \sum_{k=0}^{n-1} a_{ki} \operatorname{tr}_{1}^{n}(\theta_{k} \alpha^{t}) = \operatorname{tr}_{1}^{n} \left(\left(\sum_{k=0}^{n-1} a_{ki} \theta_{k} \right) \alpha^{t} \right) = \operatorname{tr}_{1}^{n}(\theta'_{i} \alpha^{t})$$

Note
$$\theta'_i = \sum_{k=0}^{n-1} a_{ki} \theta_k \in GF(2^n) - \{0\}$$

Remarks

▶ Non-basis representation may not work

Example 7. A matrix obtained from the non-basis vector represented multiplication table of $GF(2^4)$

Note 15th row and 16th row are not orthogonal

