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Cans p= 1 (med 8)
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Sub Case: Pz -l (med 8)
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B Theorem 1 forcase p = +1 (mod 8)

Let » be a prime with p = +£1 (mod 8), n be the

order of 2 mod p, and a be a primitive root mod p

such that a%l = 2 (mod p). Then, there exists a

primitive p-th root of unity 5 in GF(2™) such that
-1_,

EEE tr (ﬁ“m) =0, 2)

=0

and the following sequence {s(t)} is the Legendre

sequence of period pfor0 <t < p - 1:

Forp= -1 (mod 8)

B
S(t:l = Z tr (lﬁﬂ-zlt) [:a:l
§=10
Forp=1 (mod 8)
o
=1+ 3, (s )
i=0

Hong-Yeop Song, Dapt. of Electrical and Computer Engineering, Yonse! Liniv
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B Lemma 2 for case p = +3 (mod 8)

Let p > 3 be a prime with p = +3 (mod 8), let n
be the order of 2 mod p. Then n must be even and
we may let 2" — 1 = 3pm for some positive integer
m. Let a be a primitive element of GF(2"). Then,
we have

1 forp=3 (mod$8
0 forp=-3 (mod 8)
Proof: (2=qiR ”“’“AF)

Whenp=+3 (mod 8),2isa quadraﬁc non-residue
mod p. If the order n of 2 mod p is odd, then 2" +1 =
2 (mod p) is a contradiction. Therefore, n_ must be
even and we may let 2" — 1 = 3pm for some positive
integer m.

Let a be a primitive element in GF(2") where 2™ —
1 = 3pm. Then, oP™ is a primitive 3rd root of unity,

Hong-Yeop Song, Dept. of Electrical and Computer Engineering, Yonsei Univ
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and we have
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= (p—1)/n = (8k + 2)/n = (4k + 1)/(n/2).
Therefore, n/2 must be odd. 5 L ol

If p = —3 (mod 8), since —1 is a quadratic residue,
there exists some x such that z2 = —1 = 27/2
(mod p). This implies that n/2 must be even.
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B Theorem 2 for case p = +3 (mod 8)

Let p > 3 be a prime with p = £3 (mod 8), n be
the order of 2 mod p, and a be a primitive root mod

o such that a%l =2 (modp). Let2™ — 1 = 3pm
for some m, and 3 be a primitive p-th root of unity in
GF(2™). Then, there exists a primitive element « in
GF(2") such that

=ty

> tr(™?s”) =0, ®)
i=0 :
and the following sequence {s(t)} forO <t <p-1
is the Legendre sequence of period p:

Forp =3 (mod 8)

2 El
=Y tr(@m?@E)) @
=L}
Forp= -3 (mod 8)
' . =
=1+ ¥ w(@®mZ@E")) (10
=0

=0

Hong-Yeop Song, Dept. of Electrical and Computer Engineering, Yonseai Univ
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B Proof of Theorem 2

We first show the existence of such a primitive ele-
ment o in GF(2") in exactly similar method in the
proof of Theorem 1. If we let + be a primitive element
in GF(2™), then it is easy to check that

=1_3 =11
Eﬂ tr ({’rpmlziﬁ“i) 4 ,-Z‘;. tr({'rz”"“]zi.ﬁ‘f) = 1.
(11)

Therefore, either @ = v or @ = ~2 is the primitive
element satisfying (8). We would like to note that for

such o« we have
&1_.1 .
E e o
> tr(a®m?p) =1. (12)
=0

— B

S

Consider the case p = 3 (mod 8). Since (p— 1) /n
is odd in this case by Lemma 2, we have
Emrol
Sie) =i e =tr{n 1= 1.
=4 by (7)
Hong-Yeop Sang, Depl. of Electrnical and Computer Engineering, Yonsei Liniv,
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From (8), (11), and (12), we also have s(1) = 0 and
sl =1.

Define X; ; as

azi"mﬂ“HEj if 2 is odd.

If ¢ is a quadratic residue mod p, then

2
& pm2igait?i _ aP™3e " ifiis even,
1_1 — B

=L PR
s(t) = s(a®¥)

|
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——
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s,
o

tr (xi,j-ﬂ-l)

I=

+tr(X§_? 1) +tr(XE,-1)

n =1

—_— Z tr (Xi,j—lj
1=0

= s(a2l-1)),

Therefore, we have s(a??) = s(1) = 0 for all ;.
Similarly, s(a2it1) = s(2) = 1 for all j. Therefore,dons.

Hong-Yeop Song, Depl. of Electrical and Computer Enginaaring, Yonsal Univ,
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B Some Historical Remarks

A binary sequence {b(t)} of period N, where b(t) £
{0, 1}, is called balanced if the number of 1's and the
number of 0's in one period differ by one.

It is said to have optimal autocorrelation if, when N =
3 (mod 4), its periodic autocorrelation function R(r)
satisfies the following:

N-1 -
R(T) - Z (_l}bft]+b{t+’r:‘ {131

=0

i {N for =0 (mod N),

* {14
—1 otherwise. (14)

Balanced binary sequences with optimal autocorrela-
tion have been widely used in spread-spectrum CDMA
communication systems, position/location systems, and
many other systems due to their randomness proper-
ties and ease of generation.

Hong-Yeop Song, Dept. of Electrical and Computer Engineering, Yonsel Univ
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with optimal autocorrelation has a period N = 3 (mod
that belongs to one of the following three categories:

=3 (mod 4) is a prime; _—» {’i'fr‘."gj

* Every known example of a balanced binary sequence ?
(2) N = p(p + 2) is a product of twin prlrnas or '|;
|

|
kB}N—E‘E—lmr::ga;; _____ "Lff__ﬁ . (

—

Based upon some extensive computation, Song and
Golomb (IEEE IT 1994 and JSPI 1997) conjectured
that the period V of a balanced binary sequence with
the optimal autocorrelation must be one of the above
three types.

Most recently, Kim and Song (JCN 1999) reported that
the conjecture is confirmed for all v = 3 (mod 4)
up to 3435, and N = 3439 is the smallest unsettled case,

Hong-Yeop Song, Dept. of Elactrical and Computer Engineering, Yonsei Urniv:
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