TRACE REPRESENTATION OF LEGENDRE SEQUENCES

J.-H. KIM M. SHIN H.-Y. SONG

YONSEL UNIVERSITY SEOUL, KOREA

■ Contents

- · Definition and Notation, and Introduction
- Existence of some primitive element of GF(2ⁿ)
- Trace Representation for $p \equiv \pm 1 \pmod{8}$
- Trace Representation for $p \equiv \pm 3 \pmod{8}$
- · Some Historical Remarks
- Some References

INTRODUCTION

- Legendre sequence G(t), $t=0,1,2,\cdots,p-1$ $G(t) = \begin{cases} 1 & \text{if } t \equiv 0 \pmod{p} \\ 0 & \text{if } t \equiv QR \pmod{p} \end{cases}$ $1 & \text{if } t \equiv QNR \pmod{p}$ where p is an odd prime.
- · m- requence m(t), t=0,1,..., 2-2

where $\sigma \in GF(2^n)$ and α is a primitive element of $GF(2^n)$.

- WHEN p=2ⁿ-1 (Mersenne prime), both
 m-requence and Legendre requence
 are balanced and have optimal 2-level
 autocorrelation, but they are inequivalent.
- @ What happens when just p=-1 (mod 4)?

Preparation

Goal: Represent Legendre sequences

$$S(t) = \sum_{a \in I} tr_i^n \left(\theta_a \cdot \alpha^{at}\right)$$

• period = p = odd prime $\Rightarrow p \mid 2^{n-1}$. Smallest such integer n is indeed the order of 2 mod p.

Proposition 1. Let p be an odd prime and n be the order of 2 mod p. Then there exists a primitive root a mod p such that $\frac{p-1}{a^n} \equiv 2 \pmod{p}.$

Pf. Letting R be the set of prim. noots mad p, we try to show that $R^{\frac{p-1}{2n}} = \{ r^{\frac{p-1}{2n}} \mid r \in R \}$ contains 2.

· Fix the notation: p, n, a.

Case p = ±1 (mod 8)

(i) n divides not only p-1, if divides $\frac{p-1}{2}$.

If
$$(\frac{2}{p}) = (-1)^{\frac{p-1}{8}} = +1 \Leftrightarrow 2 \text{ is a QR. mod } p$$

 $\Leftrightarrow \chi^2 = 2 \pmod{p}$, some χ .

Therefore,

Since n is the order of 2 mod p, we are done.

(ii) For any $\beta \in GF(2^n)$, if $i \equiv j \pmod{\frac{r-1}{n}}$

tr,
$$(\beta^{a^i}) = tr, (\beta^{a^i})$$

where a is a prim. noot mad p such that an = 2 (p).

$$\frac{Pf.}{r(\beta^{a^{i}})} = tr(\beta^{a^{i-1}\kappa+i}) = tr(\beta^{a^{i}a^{i}})$$

$$= tr(\beta^{a^{i}})$$

(iii) There exists a primitive p-th root of unity $\beta \in GF(2^n)$ such that

$$\sum_{i=0}^{2n-1} tr_i^n \left(\beta^{a^{2i}}\right) = 0.$$

Pf. Let 1 ∈ GF(2") be any primitive p-th noot of unity, and consider the following:

$$\sum_{i=0}^{p-1} \left[tr_i^n \left(\gamma^{a^{ai}} \right) + tr_i^n \left(\left[\gamma^a \right]^{ai} \right) \right]$$

$$= \sum_{j=0}^{n-1} \left[\sum_{i=0}^{\frac{n-1}{2n}-1} \left(\gamma^{2i} \right)^{2^{\frac{1}{2}}} + \sum_{i=0}^{\frac{n-1}{2n}-1} \left(\gamma^{2i+1} \right)^{2^{\frac{1}{2}}} \right]$$

$$=\sum_{j=0}^{m-1}\sum_{i=0}^{m-1}\left(\gamma^{a^{i}}\right)a^{j\cdot\frac{p-1}{m}}$$
 since $a=a^{\frac{p-1}{m}}$

claim:
$$S(\pm) = \sum_{i=0}^{\frac{p-1}{2m}-1} tr_i \left(\beta^{2i} \pm \frac{1}{2m}\right), \ t = 0,1,\dots,p-1,$$

is Legendre requence of period p.

$$S(0) = \sum_{i=0}^{\frac{p-1}{2n}-1} + r(1) = \underbrace{(+1+\cdots+1)}_{p-1} = \frac{p-1}{2n} = 1.$$

$$S(1) = \sum_{i=0}^{p-1} + r(\beta^{ai}) = 0.$$

$$\beta \text{ is so defined in (iii).}$$

$$Observe:$$

$$p = 8K + 7$$

$$\frac{p-1}{2} = 4K + 3 = odd$$

$$n = odd$$

(iii) says
$$S(1) + S(a) = 1$$
 } $\Rightarrow S(a) = 1$.

Remaining steps:

if
$$t = QR \mod p \Rightarrow t = a^{2j}$$
 some j
 $\therefore s(t) = s(a^{2j}) = \sum_{i=0}^{p-1} tr(\beta^{a^{2(i+j)}}) = \sum_{i} tr(\beta^{a^{2i}} = s(1))$

Sub case
$$p \equiv 1 \pmod{8}$$

$$S(t) = 1 + \sum_{i=0}^{p-1} tr_i^n \left(\beta^{2i+1}t\right), t=0,1,...,p-1,$$
is a Legendre sequence of period p .

■ Theorem 1 for case $p \equiv \pm 1 \pmod{8}$

Let p be a prime with $p \equiv \pm 1 \pmod 8$, n be the order of 2 mod p, and a be a primitive root mod p such that $a^{\frac{p-1}{n}} \equiv 2 \pmod p$. Then, there exists a primitive p-th root of unity β in $GF(2^n)$ such that

$$\sum_{i=0}^{\frac{p-1}{2n}-1} \text{tr}\left(\beta^{a^{2i}}\right) = 0,$$
 (2)

and the following sequence $\{s(t)\}$ is the Legendre sequence of period p for $0 \le t \le p-1$:

For $p \equiv -1 \pmod{8}$

$$s(t) = \sum_{i=0}^{\frac{p-1}{2n}-1} \text{tr}\left(\beta^{a^{2i}t}\right)$$
 (3)

For $p \equiv 1 \pmod{8}$

$$s(t) = 1 + \sum_{i=0}^{\frac{p-1}{2n}-1} \operatorname{tr}\left(\beta^{a^{2i+1}t}\right) \tag{4}$$

■ Lemma 2 for case $p \equiv \pm 3 \pmod{8}$

Let p > 3 be a prime with $p \equiv \pm 3 \pmod{8}$, let n be the order of 2 mod p. Then n must be even and we may let $2^n - 1 = 3pm$ for some positive integer m. Let α be a primitive element of $GF(2^n)$. Then, we have

$$\operatorname{tr}(\alpha^{pm}) = \begin{cases} 1 & \text{for } p \equiv 3 \pmod{8} \\ 0 & \text{for } p \equiv -3 \pmod{8} \end{cases} \tag{7}$$

Proof:

(2=QNR mod P)

When $p \equiv \pm 3 \pmod{8}$, 2 is a quadratic non-residue mod p. If the order n of 2 mod p is odd, then $2^{n+1} \equiv 2 \pmod{p}$ is a contradiction. Therefore, n must be even and we may let $2^n - 1 = 3pm$ for some positive integer m.

Let α be a primitive element in $GF(2^n)$ where $2^n - 1 = 3pm$. Then, α^{pm} is a primitive 3rd root of unity,

and we have

$$\operatorname{tr}(\alpha^{pm}) = \sum_{i=0}^{n-1} (\alpha^{pm})^{2^i}$$

$$= \sum_{i=0}^{n/2-1} (\alpha^{pm} + \alpha^{2pm})^{2^{2i}} = \frac{n}{2}.$$

$$= \sum_{i=0}^{n} (\alpha^{pm} + \alpha^{2pm})^{2^{2i}} = \frac{n}{2}.$$

$$= 1 : \alpha^{pm} \text{ is a primi. 3rd sect of 1.}$$

If $p \equiv 3 \pmod{8} \Rightarrow p = 8k + 3$ for some $k \Rightarrow (p-1)/n = (8k+2)/n = (4k+1)/(n/2)$. Therefore, n/2 must be odd.

If $p \equiv -3 \pmod{8}$, since -1 is a quadratic residue, there exists some x such that $x^2 \equiv -1 \equiv 2^{n/2} \pmod{p}$. This implies that n/2 must be even.

This proves (7).

Since
$$-1 = \sqrt{2} = a^{2} \quad \text{if } z = a^{3}$$

$$-1 = 2^{2} = a^{2} \quad \text{if } z = a^{3}$$

$$-1 = 2^{2} = a^{2} \quad \text{if } z = a^{3}$$

$$\Rightarrow 2j = i \cdot \frac{n}{2} + (p-1) \cdot k$$

$$2 = QNR \mod p \Rightarrow i = odd \Rightarrow \frac{n}{2} = even.$$

■ Theorem 2 for case $p \equiv \pm 3 \pmod{8}$

Let p>3 be a prime with $p\equiv \pm 3\pmod 8$, n be the order of 2 mod p, and a be a primitive root mod p such that $a^{\frac{p-1}{n}}\equiv 2\pmod p$. Let $2^n-1=3pm$ for some m, and β be a primitive p-th root of unity in $GF(2^n)$. Then, there exists a primitive element α in $GF(2^n)$ such that

$$\sum_{i=0}^{\frac{p-1}{n}-1} \operatorname{tr}\left((\alpha^{pm})^{2^i} \beta^{a^i}\right) = 0, \tag{8}$$

and the following sequence $\{s(t)\}$ for $0 \le t \le p-1$ is the Legendre sequence of period p:

For $p \equiv 3 \pmod{8}$

$$s(t) = \sum_{i=0}^{\frac{p-1}{n}-1} \operatorname{tr}\left((\alpha^{pm})^{2^i} (\beta^{a^i})^t\right)$$
(9)

For $p \equiv -3 \pmod{8}$

$$s(t) = 1 + \sum_{i=0}^{\frac{p-1}{n}-1} \text{tr}\left((\alpha^{2pm})^{2^i}(\beta^{a^i})^t\right)$$
 (10)

■ Proof of Theorem 2

We first show the existence of such a primitive element α in $GF(2^n)$ in exactly similar method in the proof of Theorem 1. If we let γ be a primitive element in $GF(2^n)$, then it is easy to check that

$$\sum_{i=0}^{\frac{p-1}{n}-1} \operatorname{tr}\left((\gamma^{pm})^{2^{i}} \beta^{a^{i}}\right) + \sum_{i=0}^{\frac{p-1}{n}-1} \operatorname{tr}\left((\gamma^{2pm})^{2^{i}} \beta^{a^{i}}\right) = 1.$$
(11)

Therefore, either $\alpha=\gamma$ or $\alpha=\gamma^2$ is the primitive element satisfying (8). We would like to note that for such α we have

$$\sum_{i=0}^{\frac{p-1}{n}-1} \operatorname{tr}\left((\alpha^{2pm})^{2^i} \beta^{a^i}\right) = 1.$$
 (12)

Consider the case $p \equiv 3 \pmod{8}$. Since (p-1)/n is odd in this case by Lemma 2, we have

$$s(0) = \sum_{i=0}^{\frac{p-1}{n}-1} \operatorname{tr}(\alpha^{pm}) = \operatorname{tr}(\alpha^{pm}) = 1.$$

$$\frac{P-1=8k+2=2(4k+1)}{n}=odd$$
 since $n=even$.

From (8), (11), and (12), we also have s(1) = 0 and s(2) = 1.

Define $X_{i,j}$ as

$$X_{i,j} \triangleq \alpha^{pm2^i}\beta^{a^{i+2j}} = \begin{cases} \alpha^{pm}\beta^{a^{i+2j}} & \text{if i is even,} \\ \alpha^{2pm}\beta^{a^{i+2j}} & \text{if i is odd.} \end{cases}$$

If t is a quadratic residue mod p, then

$$s(t) = s(a^{2j}) = \sum_{i=0}^{\frac{p-1}{n}-1} \operatorname{tr}\left(X_{i,j}\right)$$

$$= \left(\sum_{i=2}^{\frac{p-1}{n}-1} \operatorname{tr}\left(X_{i,j-1}\right)\right)$$

$$+ \operatorname{tr}\left(X_{0,j-1}^{2}\right) + \operatorname{tr}\left(X_{1,j-1}^{2}\right)$$

$$= \sum_{i=0}^{\frac{p-1}{n}-1} \operatorname{tr}\left(X_{i,j-1}\right)$$

$$= s(a^{2(j-1)}).$$

Therefore, we have $s(a^{2j}) = s(1) = 0$ for all j. Similarly, $s(a^{2j+1}) = s(2) = 1$ for all j. Therefore, does not consider the sum of the sum o

■ Some Historical Remarks

A binary sequence $\{b(t)\}\$ of period N, where $b(t) \in$ {0, 1}, is called balanced if the number of 1's and the number of 0's in one period differ by one.

It is said to have optimal autocorrelation if, when $N \equiv$ 3 (mod 4), its periodic autocorrelation function $R(\tau)$ satisfies the following:

$$R(\tau) \triangleq \sum_{i=0}^{N-1} (-1)^{b(t)+b(t+\tau)}$$

$$= \begin{cases} N & \text{for } \tau \equiv 0 \pmod{N}, \\ -1 & \text{otherwise.} \end{cases}$$
(13)

$$= \begin{cases} N & \text{for } \tau \equiv 0 \pmod{N}, \\ -1 & \text{otherwise.} \end{cases}$$
 (14)

Balanced binary sequences with optimal autocorrelation have been widely used in spread-spectrum CDMA communication systems, position/location systems, and many other systems due to their randomness properties and ease of generation.

Every known example of a balanced binary sequence with optimal autocorrelation has a period $N \equiv 3 \pmod{4}$ that belongs to one of the following three categories:

- (1) $N \equiv 3 \pmod{4}$ is a prime; \longrightarrow legendrold
- (2) N = p(p+2) is a product of twin primes; or
- (3) $N = 2^{\frac{1}{6}} 1$, for $t = 2, 3, 4, \dots$ "LFSR

Based upon some extensive computation, Song and Golomb (IEEE IT 1994 and JSPI 1997) conjectured that the period N of a balanced binary sequence with the optimal autocorrelation must be one of the above three types.

Most recently, Kim and Song (JCN 1999) reported that the conjecture is confirmed for all $N \equiv 3 \pmod 4$ up to 3435, and N = 3439 is the smallest unsettled (448).

Hong-Yeop Song, Dept. of Electrical and Computer Engineering, Yonsei Univ.

1 up to 10,000, only 13 cases remain unsettled.