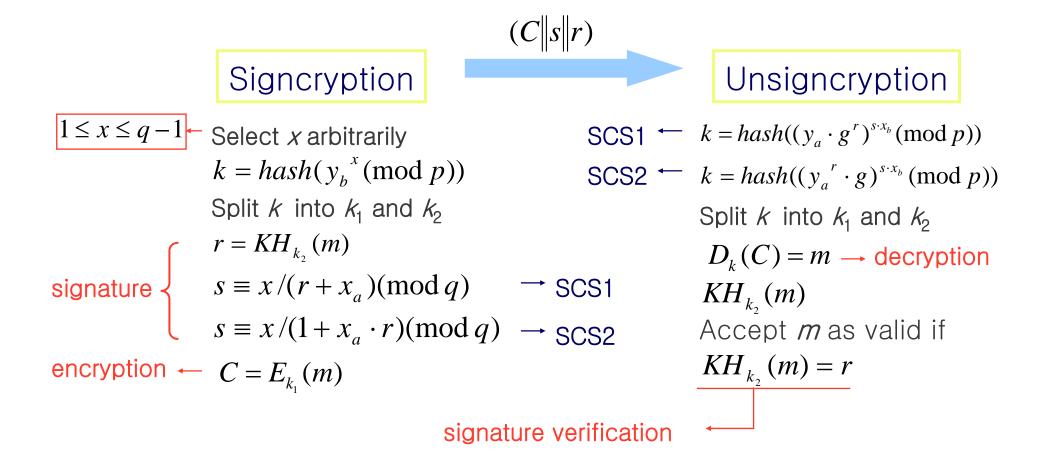


Some New Improved Signcryption Schemes

Jin-Woo Chung, Hong-Yeop Song

Coding & Information Theory Laboratory Dept. of Electrical and Electronic Engineering, Yonsei University

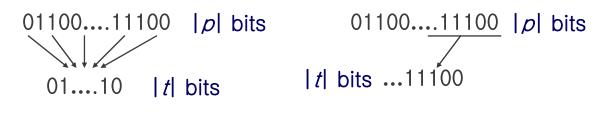


- Signcryption Algorithm
- Defects of Signcryption
- Generalization of Signcryption
- Analysis of Generalized Signcryption
- Good Signcryption Schemes
- Conclusion

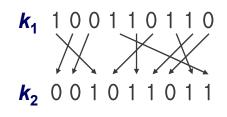
Signcryption

Select x arbitrarily $k = hash(y_b^x \pmod{p})$ Split k into k_1 and k_2 $r = KH_{k_2}(m)$ $s \equiv x/(r + x_a)(\mod q) \longrightarrow SCS1 : Defect 1, Defect 3$ $s \equiv x/(1 + x_a \cdot r)(\mod q) \longrightarrow SCS2 : Defect 1, Defect 2, Defect 3$ $C = E_{k_1}(m)$

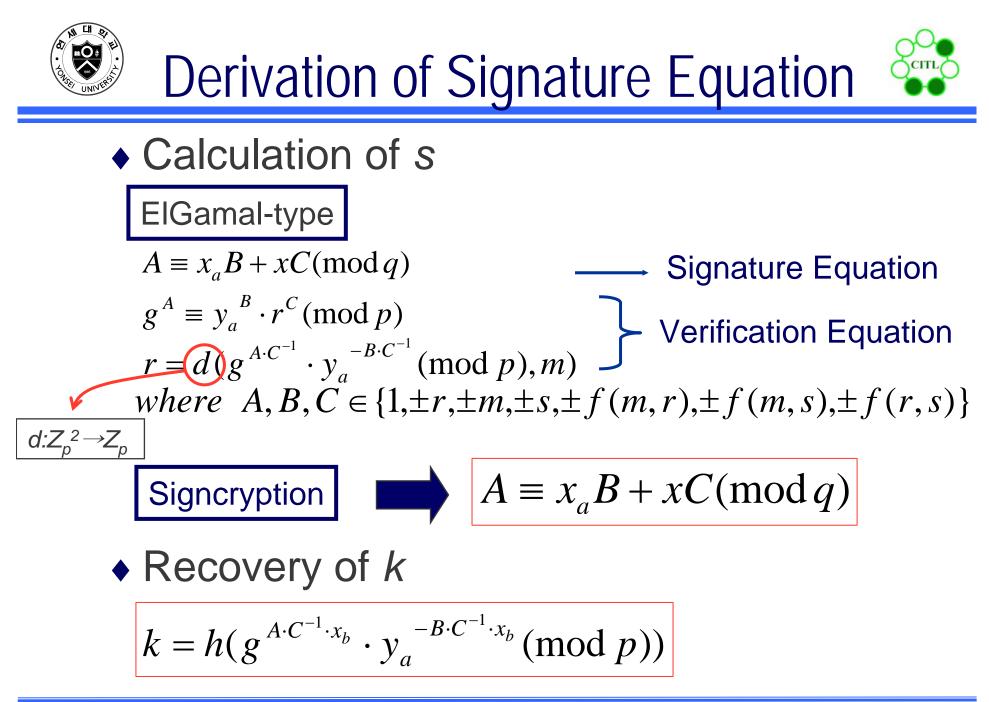
- Defect 1 : Division by zero.
- Defect 2 : Vulnerable to Attack.
- Defect 3 : Division algorithm required.


Signcryption

Select x arbitrarily $k = hash(y_b^x \pmod{p}) \longrightarrow$ Must we use one-way hash function? Split k into k_1 and $k_2 \longrightarrow$ Is splitting k necessary? $r = KH_{k_2}(m) \longrightarrow$ Must we use keyed hash function? $s \equiv x/(r + x_a)(\mod q)$ $s \equiv x/(1 + x_a \cdot r)(\mod q)$ Is it possible to generalize the calculation of s?


- In the calculation of k=hash(y_b × (mod p)), must we use a one-way hash function?
- *k* is a secret parameter. Therefore, we do not have to use a hash function.
- Use of a hash function can be generalized to arbitrary function $h: Z_p \rightarrow Z_t$.
 - Example) Define function *h* as selecting |t| bits from $y_b^x (mod p)$

- Is splitting k the only way to obtain k₁
 and k₂?
- One of the simple ways is choosing
 k=k₁ and obtain k₂ from k₁.
 - Example 1) Let k = 100110110. Then $k_1 = k$.



- Example 2) Select $k_1 = k_2 = k$.

- In the calculation of r = KH_{k2}(m), must we use a keyed hash function ?
- A key-less hash function can also be used instead of a keyed hash function.
- If a keyed hash function is used, then additional computational cost is needed.

 $A, B, C \in \{1, \pm r, \pm m, \pm s, \pm f(m, r), \pm f(m, s), \pm f(r, s)\}$

Signature Equation $A \equiv x_a B + xC$ (mod

- Conditions for simplicity
- 1. The message value *m* is eliminated. \Rightarrow *A*, *B*, *C* \in {1, ±*r*, ±*s*, ±*f*(*r*,*s*) }
- 2. The operation *f* is confined to modulo addition or multiplication.
- 3. One of the parameters A, B, C equals to 1.

 $(1, r, s), (1, r, r+s), (1, r, r \cdot s), (1, s, r+s), (1,$

					1754	50	5
A	В	С	Signature Equation	Calculation of s	D1	$\mathbf{D2}$	D3
1	r	8	$1\equiv x_{a}\cdot r+x\cdot s$	$s\equiv (1-x_{a}\cdot r)/x$	X	1,2	
1	8	r	$1\equiv x_{a}\cdot s+x\cdot r$	$s\equiv (1-x\cdot r)/x_a$	х	2,1	2
r	1	8	$r\equiv x_{a}+x\cdot s$	$s\equiv (r-x_a)/x$	X	1	2
r	8	1	$r\equiv x_{a}\cdot s+x$	$s\equiv (r-x)/x_a$	×	1	1
8	1	r	$s\equiv x_{a}+x\cdot r$	$s\equiv x_a+x\cdot r$	X	1	1
8	r	1	$s\equiv x_{a}\cdot r+x$	$s\equiv x_{a}\cdot r+x$	×	1	×
1	r	r + s	$1 \equiv x_a \cdot r + x \cdot (r+s)$	$s\equiv (1-x_{a}\cdot r-x\cdot r)/x$	X	1,3	2
1	r + s		- , ,	$s \equiv (1 - x \cdot r - x_a \cdot r)/x_a$	×		
r		r+s	$r \equiv x_a + x \cdot (r+s)$	$s \equiv (r - x_a - x \cdot r)/x$	X	3	2
r	r+s	1	$r \equiv x_a \cdot (r+s) + x$	$s \equiv (r - x - x_a \cdot r)/x_a$	x	3	1
r + s	1	r	$r+s\equiv x_{a}+x\cdot r$	$s\equiv x_a+x\cdot r-r$	×	1	1
r + s	r	1	$r+s\equiv x_{a}\cdot r+x$	$s\equiv x_a\cdot r+x-r$	X	1	х
1	r	$r \cdot s$	$1 \equiv x_a \cdot r + x \cdot (r \cdot s)$	$s \equiv (1 - x_a \cdot r)/(x \cdot r)$	1	2	2
1	$r \cdot s$	r	$1\equiv x_{a}\cdot (r\cdot s)+x\cdot r$	$s \equiv (1 - x \cdot r)/(x_a \cdot r)$	1	2	2
r	1	$r \cdot s$	$r\equiv x_a+x\cdot (r\cdot s)$	$s\equiv (r-x_a)/(x\cdot r)$	1	1	2
r	$r \cdot s$	1	$r\equiv x_{a}\cdot (r\cdot s)+x$	$s\equiv (r-x)/(x_a\cdot r)$	1	1	1
$r \cdot s$	1	r	$r \cdot s \equiv x_a + x \cdot r$	$s\equiv (x_a+x\cdot r)/r$	1	×	2
$r \cdot s$	r	1	$r \cdot s \equiv x_a \cdot r + x$	$s\equiv (x_{a}\cdot r+x)/r$	1	X	1
1	8	r + s	$1\equiv x_{a}\cdot s+x\cdot (r+s)$	$s\equiv (1-x\cdot r)/(x_a+x)$	Е	1,3	2
1	r+s	8	$1\equiv x_a\cdot (r+s)+x\cdot s$	$s \equiv (1 - x_a \cdot r)/(x_a + x)$	Е	3,1	2
8	1	r + s	$s\equiv x_a+x\cdot (r+s)$	$s \equiv (x_a + x \cdot r)/(1-x)$	Е	3	2
8	r+s	1	$s\equiv x_a\cdot (r+s)+x$	$s \equiv (x_a \cdot r + x)/(1 - x_a)$	Е	3	1
r + s	1	8	$r+s\equiv x_a+x\cdot s$	$s \equiv (x_a - r)/(1 - x)$	Е	1	2
r + s	8	1	$r+s\equiv x_{a}\cdot s+x$	$s \equiv (x-r)/(1-x_a)$	Ε	1	1
1	8	$r \cdot s$	$1\equiv x_{a}\cdot s+x\cdot (r\cdot s)$	$s\equiv 1/(x_a+x\cdot r)$	2	1	2
1	$r \cdot s$	8	$1\equiv x_{a}\cdot (r\cdot s)+x\cdot s$	$s\equiv 1/(x_a\cdot r+x)$	2	1	2
8	1	$r \cdot s$	$s\equiv x_{a}+x\cdot (r\cdot s)$	$s\equiv x_a/(1-x\cdot r)$	2	1	2
8	$r \cdot s$	1	$s\equiv x_{a}\cdot (r\cdot s)+x$	$s\equiv x/(1-x_a\cdot r)$	2	1	1
$r \cdot s$	1	8	$r \cdot s \equiv x_a + x \cdot s$	$s\equiv x_a/(r-x)$	1	×	2
$r \cdot s$	8	1	$r \cdot s \equiv x_a \cdot s + x$	$s\equiv x/(r-x_a)$	1	×	1

$$A \equiv x_a B + xC \pmod{q}$$

Good Signcryption Scheme (Having only one defect, detection speed is fast and number of division is less than or equal to 1.)

D1, D2, D3 : Defect 1, 2, 3

X : No defect

- # in D1, D2 : Detection speed.
- # in D3 : Number of division.
- E: Easily Avoided

11/13 September. 14. 2001

Good Signcryption Schemes

Α	В	С	GSCSs	Defect 1 or 2 (if $r \neq 0$)	no. of div.	Comment
s	1	r	YES	None if $r \neq 0$	1	*
s	r	1	YES	None if $r \neq 0$	0	ISCS1 *
r+s	1	r	YES	None if $r \neq 0$	1	*
r+s	r	1	YES	None if $r \neq 0$	0	ISCS2 *
$r \cdot s$	r	1	YES	None if $r \neq 0$	1	*
$r \cdot s$	1	r	NO	None if $r \neq 0$	2	
r	s	1	YES	Defect 2 even if $r \neq 0$	1	
r+s	s	1	YES	Defect 2 even if $r \neq 0$	1	
s	$r \cdot s$	1	NO	Defect 1 even if $r \neq 0$	1	SCS2
$r \cdot s$	s	1	YES	Defect 1 even if $r \neq 0$	1	SCS1

- 5 GSCSs can overcome both Defect 1 and 2 when modification of a hash function is used.
- 2 GSCSs can overcome all three defects, which are called Improved Signcryption Schemes(ISCSs).

Coding and Information Theory Lab

12/13 September. 14. 2001

The 5 GSCSs marked with * are good enough.

 For 2 ISCSs, all 3 defects are eliminated by using a hash function that does not have zero as its output.