Trace representation and linear complexity of binary *e*-th residue sequences

WCC2003 March 24-28, 2003

Zongduo Dai

State Key Laboratory of Information Security, Chinese Academy of Sciences, Beijing, China

Guang Gong

Dept. Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada

Hong-Yeop Song

School of Electrical and Electronics Engineering, Yonsei University, Seoul, Korea hy.song@coding.yonsei.ac.kr

I. Introduction

- \diamond In this presentation, we would like to announce that \ldots
 - We define binary e-th residue sequences $s = \{s(t) | t \ge 0\}$ of period p = 1 + ef that is constant on the cosets of $F_p^* \mod H_e$.
 - We try to give a general description on their
 - 1. defining pairs of the form $(g(x), \beta)$ such that $s(t) = g(\beta^t)$ for t = 0, 1, 2, ...,
 - 2. trace representations, and
 - 3. minimal polynomials, and hence, their linear complexities.
 - For simplicity, we considered (and were able to give answers to) all e-th residue sequences for e = 2 and e = 6, and the e-th residue sequences that are characteristic sequences of e-th power residue cyclic difference sets for e = 4, 8, and 10 (as given in Baumert '71 or Storer '67 or Berndt, Evans, and Williams '98)
 - The methodology will work for any *e*-th residue sequences whether they are characteristic sequences of some cyclic difference sets or not.

• A (v, k, λ) cyclic difference set D is a k-subset of $\mathbb{Z}_v \stackrel{\triangle}{=} \mathbb{Z}/v\mathbb{Z}$ such that for all non-zero $d \in \mathbb{Z}_v$ the equation

$$x - y \equiv d \pmod{v}$$

has exactly λ solution pairs (x, y) with $x, y \in D$.

• A binary sequence $\mathbf{s} = \{s(t) | t \ge 0\}$ (or "the characteristic sequence") of a (v, k, λ) -CDS of period v, defined by s(t) = 0 iff $t \in D$, has 2-level autocorrelation values, given as

$$\phi(\tau) = \begin{cases} v & \tau \equiv 0 \pmod{v} \\ v - 4(k - \lambda) & \tau \not\equiv 0 \pmod{v}. \end{cases}$$

• A cyclic Hadamard difference set is a (v, (v-1)/2, (v-3)/4)-cyclic difference set, and known to be equivalent to a balanced binary sequence of period v with ideal autocorrelation: $\phi(\tau) = -1$ for all $\tau \not\equiv 0 \pmod{v}$.

Conjecture 1 If a cyclic Hadamard difference set of length v exists, then v must be either

(i) a prime congruent to 3 mod 4,
(ii) a product of twin primes, or
(iii) one less than a power of 2.

- A series of computer search confirms the conjecture is true for v < 10000 except possibly for the following 13 cases: **3439**, 4355, 4623, 5775, 7395, 7743, 8227, 8463, 8591, 8835, 9135, 9215, and 9423.
 - 1. H. -Y. Song and S. W. Golomb, "On the existence of cyclic Hadamard difference sets," *IEEE Trans. Inform. Theory*, vol. 40, no. 4, pp. 1266-1268, July 1994.
 - J. -H. Kim and H. -Y. Song, "Existence of Cyclic Hadamard Difference Sets and its Relation to Binary Sequences with Ideal Autocorrelation," *Journal of Communications and Networks*, vol. 1, no.1, pp. 14-18, March 1999.
 - 3. J. -H. Kim, *On the Hadamard Sequences*, PhD Thesis, Dept Electronics Engineering, Yonsei University, Feb. 2002.

• For those three types of v, we have the following constructions:

1. $v = p \equiv 3 \pmod{4}$ is a prime:

(a) Quadratic residue construction works for all such p.

(b) Hall's sextic residue construction works for $p = 4x^2 + 27$.

- 2. v = p(p+2) is a product of twin primes:
 - (a) Generalization of "Quadratic residue construction" works.

3.
$$v = 2^t - 1$$
 for $t = 1, 2, 3,$

- (a) m-sequence (or maximal LFSR sequence) for all such t.
- (b) GMW construction for all "composite" t.
- (c) 3-term trace sequences, 5-term trace sequences
- (d) hyperoval type (Segre Type, and Glyn Type I and Type II)

Example 1 Binary sequences of period $31 = 4 \cdot 1^2 + 27 = 1 + 6 \cdot 5$. Note that 3 is a generator of F_{31}^* and we have

Cosets	Legendre	Hall's sextic
$C_* = \{0\}$		
$C_0 = \{1, 2, 4, 8, 16\}$	X	X
$C_1 = \{3, 6, 12, 24, 17\}$		X
$C_2 = \{9, 18, 5, 10, 20\}$	X	
$C_3 = \{27, 23, 15, 30, 29\}$		X
$C_4 = \{19, 7, 14, 28, 25\}$	X	
$C_5 = \{26, 21, 11, 22, 13\}$		

 The Hall's sextic residue sequence b(i) turns out to be equivalent to m-sequence of period 31 = 2⁵ − 1.

Hong-Yeop Song

- Motivation of the current research
 - 1. Those of length type (i) or type (ii) are originally constructed much differently from those of length type (iii) that can naturally be described using a trace function or a sum of trace functions.
 - 2. So, what is the trace representation of those of length type (i) or (ii) ?
 - 3. What are their minimal polynomials (and hence, the linear complexity) ?
 - 4. Will it help to settle the conjecture ? Well, not much yet...

- Historical Review on "Quadratic residue sequences"
 - 1. (Turyn '64) Linear generation of quadratic residue sequences
 - 2. (Pott, '92) Abelian difference set codes
 - 3. (No, Chung, Yang, Song, '96) Trace representation of Legendre sequences of Mersenne prime period
 - 4. (Ding, Helleseth, Shan, '98) Linear complexity of Legendre sequences
 - 5. (Kim, Song, '01) Trace representation of Legendre sequences
- on "Hall's sextic residue sequences"
 - 1. (Lee, No, Chung, Yang, Kim, Song, '97) Trace representation for Mersenne Prime periods:31, 127, and 131071.
 - 2. (Kim, Song, '01) Linear complexity of Hall's sextic residue sequences
 - 3. (Kim, Gong, Song, '02) Trace representation of HSR sequences of period $p \equiv 7 \pmod{8}$.
 - 4. This paper completes "trace representation of HSR sequences" including the case $p \equiv 3 \pmod{8}$
- on twin-prime sequences
 - 1. (Ding, '97) Linear complexity of generalized cyclotomic sequences of order 2
 - 2. (Kim, Song, '99) Linear complexity of binary Jacobi sequences (unpublished)
 - 3. (Dai, Gong, Song, '02) Trace representation of binary Jacobi sequences (submitted)
- The conjecture is still widely open !

II. *e*-th residue sequences and their trace representations

- p is an odd prime, and p = ef + 1 for some e, f
- $F_p^* = F_p \setminus \{0\}$ and $H_e = \{x^e \mid x \in F_p^*\}$
- α be a primitive p-th root of unity, and let $<\alpha>^*=<\alpha>\setminus\{1\}$
- n is the order of $2 \bmod p$, c = (p-1)/n, $d = \gcd(c,e)$, $c_1 = c/d$, and $e_1 = e/d$ so that

$$ef = p - 1 = cn$$
, $(p - 1)/d = e_1 f = c_1 n$, and $(e_1, c_1) = 1$.

- \bullet $LC(\mathbf{s})$ is the linear complexity of a binary sequence \mathbf{s}
- $w_H(\underline{\rho})$ is the Hamming weight of a tuple $\underline{\rho}$ over \overline{F}
- $\delta(x) = 1$ (or 0) if the integer x is odd (or even), respectively.

9/30

Definition 1 (*e*-th residue sequences) Let $\mathbf{s} = \{s(t) | t \ge 0\}$ be a binary sequence of period p = ef + 1. Then, we say \mathbf{s} is an *e*-th residue sequence if s(t) is constant on each of the cosets $kH_e = \{kx \mid x \in H_e\}$ of H_e in F_p^* , that is, if $s(t_1) = s(t_2)$ whenever $t_1H_e = t_2H_e$.

Example 2 (single coset sequences) Given any coset kH_e , let $\mathbf{b}_{kH_e} = \{b(t)|t \ge 0\}$, where b(t) = 1 for $t \in kH_e$ and b(t) = 0 otherwise, then \mathbf{b}_{kH_e} is an *e*-th residue sequence.

Example 3 Let $\underline{1} = \{b(t) | t \ge 0\}$, where b(t) = 1 for all t; and let $\mathbf{b}_* = \{b(t) | t \ge 0\}$, where b(t) = 1 if $t = 0 \pmod{p}$ and b(t) = 0 otherwise, then these two are also *e*-th residue sequences.

We will denote the sequence \mathbf{b}_{kH_e} simply by \mathbf{b}_k with $k \in F_p^*$. It is clear there are only e distinct sequences in the set $\{\mathbf{b}_k | k \in F_p^*\}$, and they can be represented by \mathbf{b}_{u^i} , for $0 \le i < e$, where u is any given generator of the group F_p^* . It is clear that $\mathbf{b}_1 = \mathbf{b}_{u^0}$ for any u, and that

$$\underline{1} = \mathbf{b}_* + \sum_{0 \le i < e} \mathbf{b}_{u^i}$$

The generating polynomial of each coset kH_e is important in expressing the trace representations of e-th residue sequences, it is defined as

$$c_{kH_e}(x) = \sum_{i \in kH_e} x^i \pmod{x^p - 1},$$

which will also be denoted simply by $c_k(x)$ where $k \in F_p^*$.

Definition 2 Given a binary sequence $\mathbf{s} = \{s(t) | t \ge 0\}$ of period p, we say $(g(x), \beta)$ form a defining pair of \mathbf{s} if $s(t) = g(\beta^t)$ for t = 0, 1, 2, ..., where g(x) is a polynomial modulo $x^p - 1$ over \overline{F} and $\beta \in <\alpha >^*$. We call g(x) the defining polynomial of \mathbf{s} , and β the corresponding defining element.

Theorem 1 *Let* p = ef + 1*.*

1. Let \mathcal{L} be the set of all *e*-th residue sequences of period *p*. Then \mathcal{L} is a vector space over F_2 of dimension 1 + e, and $\{\mathbf{b}_{u^i} | 0 \le i < e\} \cup \{\underline{1}\}$ is a basis of \mathcal{L} over F_2 , where *u* is any given generator of F_p^* ; *i.e.*, any *e*-th residue sequence in \mathcal{L} can be expressed uniquely in the form of

$$\mathbf{s}_{\mathbf{a}^*} = a_* \underline{1} + \sum_{0 \le i < e} a_i \mathbf{b}_{u^i},$$

for some binary (1 + e)-tuple $\mathbf{a}^* = (a_*, a_0, a_1, ..., a_i, ..., a_{e-1})$.

2. Keep the notations in the above item, and let $\beta \in <\alpha >^*$. Corresponding to \mathbf{a}^* and β , define

$$\begin{cases} \rho_* = a_* + f \sum_{0 \le i < e} a_i, \\\\ \rho_j = \sum_{0 \le i < e} a_i c_{-u^{i+j}}(\beta) \end{cases}$$

and define

$$g(x) = \rho_* + \sum_{0 \le j < e} \rho_j c_{u^j}(x).$$

Then $(g(x),\beta)$ is a defining pair of $\mathbf{s}_{\mathbf{a}^*}$.

School of E.& E. Engineering, Yonsei Univ.

3. Keep the notations in the above items. Then

$$LC(\mathbf{s}_{\mathbf{a}^*}) = \delta(\rho_*) + w_H(\underline{\rho})f,$$

where

$$\underline{\rho} = (\rho_0, \rho_1, \cdots, \rho_i, \cdots, \rho_{e-1}),$$

which is given in the item 2 above.

4. Keep the notations in the above items. Let $s_{a^*} = \{s(t) | t \ge 0\}$. With the knowledge of the defining pair of s_{a^*} as shown in the item 2 above, its a trace representation can be obtained immediately as follows:

$$s(t) = \rho_* + \sum_{0 \le i < e} \operatorname{Tr}_1^n \left(\begin{array}{cc} \rho_i & \sum_{\substack{0 \le j < c, \\ j = i \pmod{e}}} \beta^{u^j t} \end{array} \right), \quad \forall t,$$

where $\operatorname{Tr}_1^n(x) = \sum_{0 \le i < n} x^{2^i}$ is the trace of x from F_{2^n} to F_2 .

Proof. The item 1 is obvious. For the item 2, we let $r(x) = \sum_{0 \le k < p} r_k x^k \pmod{x^p - 1}$ be the defining polynomial of \mathbf{b}_{u^i} corresponding to β , and take the inverse Fourier transform:

$$b_{u^{i}}(t) = r(\beta^{t}) = \sum_{0 \le k < p} r_{k} \beta^{kt}, \text{ or } r_{k} = \sum_{0 \le t < p} b_{u^{i}}(t) \beta^{-kt}.$$

For k = 0,

$$r_0 = \sum_{0 \le t < p} b_{u^i}(t) = |u^i H_e| = f.$$

For $k \in F_p^*$, we have

$$r_{k} = \sum_{0 \le t < p} b_{u^{i}}(t)\beta^{-kt} = \sum_{t \in u^{i}H_{e}} \beta^{-kt} = \sum_{t \in -ku^{i}H_{e}} \beta^{t} = c_{-ku^{i}}(\beta).$$

Note that if $kH_e = lH_e$ then $-ku^iH_e = -lu^iH_e$, and hence

$$r_k = c_{-ku^i}(\beta) = c_{-lu^i}(\beta) = r_l.$$

Therefore, r_k depends only on the coset of H_e in F_p^* to which k belongs. Denoting $k = u^j \in F_p^*$ for j with $0 \le j , we obtain the following useful relation:$

$$r_{u^j} = c_{-u^{i+j}}(\beta) = c_{-u^{i+j+em}}(\beta) = r_{u^{j+em}}, \quad \forall m.$$

Hong-Yeop Song

Therefore,

$$\begin{aligned} r(x) &= f + \sum_{1 \le k < p} r_k x^k = f + \sum_{0 \le j < p-1} r_{u^j} x^{u^j} = f + \sum_{0 \le j < e} \sum_{0 \le k < f} r_{u^{j+ek}} x^{u^{j+ek}} \\ &= f + \sum_{0 \le j < e} r_{u^j} \sum_{0 \le k < f} x^{u^{j+ek}} = f + \sum_{0 \le j < e} c_{-u^{i+j}}(\beta) c_{u^j}(x) \stackrel{\triangle}{=} g_{u^i}(x). \end{aligned}$$

Clearly, $(g_{\mathbf{1}}(x)=1,\beta)$ is a defining pair of the all-1 sequence 1. Therefore,

$$\begin{split} g(x) &= a_* + \sum_{0 \le i < e} a_i g_{u^i}(x) \\ &= a_* + \sum_{0 \le i < e} a_i \left(f + \sum_{0 \le j < e} c_{-u^{i+j}}(\beta) c_{u^j}(x) \right) \\ &= a_* + f \sum_{0 \le i < e} a_i + \sum_{0 \le j < e} \left(\sum_{0 \le i < e} a_i c_{-u^{i+j}}(\beta) \right) c_{u^j}(x) \\ &= \rho_* + \sum_{0 \le j < e} \rho_j c_{u^j}(x). \end{split}$$

The item 3 is obvious since LC is given as the number of non-zero terms in g(x). For trace representation in the item 4, we first determine the trace representation of \mathbf{b}_{u^i} as follows: Since it is a binary sequence, we have, using $r(x) = g_{u^i}(x)$ (mod $x^p - 1$),

$$\sum_{0 \le k < p} r_k^2 \beta^{2t} = r(\beta^t)^2 = b_{u^i}(t)^2 = b_{u^i}(t) = r(\beta^t) = \sum_{0 \le k < p} r_k \beta^t,$$

or

$$r_k^2 = r_{2k}$$
 or $r_k^{2l} = r_{2^l k} \quad \forall l.$

Since both 2 and u^c have order n, we have $< 2 > = < u^c >$ and

$$F_p^* = \bigcup_{0 \le i < c} u^i < u^c > = \bigcup_{0 \le i < c} u^i < 2 >.$$

Therefore, we have

$$\begin{split} b_{u^{i}}(t) &= r_{0} + \sum_{0 \leq j < p-1} r_{u^{j}} \beta^{u^{j}t} = r_{0} + \sum_{\substack{0 \leq j < c \\ 0 \leq l < n}} r_{u^{j}2^{l}} \beta^{u^{j}2^{l}t} = r_{0} + \sum_{\substack{0 \leq j < c \\ 0 \leq l < n}} \left(r_{u^{j}} \beta^{u^{j}t} \right)^{2^{l}} \\ &= r_{0} + \sum_{0 \leq j < c} \operatorname{Tr}_{1}^{n} \left(r_{u^{j}} \beta^{u^{j}t} \right) = f + \sum_{\substack{0 \leq j < c \\ 0 \leq j < c}} \operatorname{Tr}_{1}^{n} \left(c_{-u^{i+j}}(\beta) \beta^{u^{j}t} \right). \end{split}$$

Hong-Yeop Song

Therefore, we have

$$\begin{split} s(t) &= a_* + \sum_{0 \le i < e} a_i b_{u^i}(t) \\ &= a_* + \sum_{0 \le i < e} a_i \left(f + \sum_{0 \le j < c} \operatorname{Tr}_1^n \left(c_{-u^{i+j}}(\beta) \beta^{u^j t} \right) \right) \\ &= a_* + f \sum_{0 \le i < e} a_i + \sum_{0 \le j < c} \operatorname{Tr}_1^n \left(\sum_{0 \le i < e} a_i c_{-u^{i+j}}(\beta) \beta^{u^j t} \right) \\ &= \rho_* + \sum_{0 \le i < e} \operatorname{Tr}_1^n \left(\rho_j \beta^{u^j t} \right) \\ &= \rho_* + \sum_{0 \le i < e} \operatorname{Tr}_1^n \left(\rho_i \sum_{\substack{0 \le j < c \\ j = i \pmod{e}}} \beta^{u^j t} \right). \end{split}$$

Theorem 2 Let p = ef + 1, and let d be the d-parameter corresponding to the chosen (p, e). Keep the notation in Theorem 1.

1. The linear complexity of any e-th residue sequence of period p must be of the form $\varepsilon + ke_1f$ for some $k \in \{0, 1, 2, ..., d\}$ and $\varepsilon \in \{0, 1\}$. Moreover, denote by $N_{\varepsilon+ke_1f}$ the total number of the e-th residue sequences of period p with the linear complexity being equal to $\varepsilon + ke_1f$. Then

$$N_{\varepsilon+ke_1f} = \begin{pmatrix} d\\ k \end{pmatrix} (2^{e_1} - 1)^k.$$

2. In the case when d = 1, we have $N_{p-1} = N_p = 2^e - 1$, and $N_0 = N_1 = 1$; moreover, let $\mathbf{s}_{\mathbf{a}^*}$ be the sequence as given in Theorem 1, then

$$LC(\mathbf{s_{a^*}}) = \begin{cases} p - 1 + \delta(a_* + fw_H(\mathbf{a})) & \text{if} \quad \mathbf{a} \neq (0, 0, ..., 0), \\ 1 & \text{if} \quad \mathbf{a} = (0, 0, ..., 0), \\ 0 & \text{otherwise}, \end{cases}$$

where we use the notation $\mathbf{a} = (a_0, a_1, ..., a_{e-1})$.

III. *e*-tuples

Based on Theorem 1, it is enough to focus on the e-tuple of the form

$$\mathbf{c}_{u}(\beta) = (c_{u^{0}}(\beta), c_{u^{1}}(\beta), ..., c_{u^{e-1}}(\beta))$$

for trace representation and minimal polynomials, etc.

We consider the set C of the *e*-tuples $\mathbf{c}_u(\beta)$ over all possible generators u of F_p^* and all $\beta \in <\alpha >^*$. That is,

$$\mathcal{C} \triangleq \{ \mathbf{c}_u(\beta) \mid \langle u \rangle = F_p^*, \ \beta \in \langle \alpha \rangle^* \}.$$

Then, it is an equivalence class under the group $G \triangleq \langle L, D_{\lambda} | \gcd(\lambda, e) = 1, 0 < \lambda < e \} >$ where

$$L\mathbf{x} = (x_1, x_2, \cdots, x_{e-1}, x_0), \ \forall \mathbf{x} = (x_0, x_1, \dots, x_{e-1}), D_{\lambda}\mathbf{x} = (x_0, x_\lambda, x_{2\lambda}, \dots, x_{(e-1)\lambda}), \ \forall \mathbf{x} = (x_0, x_1, \dots, x_{e-1}).$$

Theorem 3 Let $\underline{c} = (c_0, c_1, \cdots, c_{e-1}) \in C$, then

1. $c_i \in F_{2^{e_1}}$ for all i.

2. <u>c</u> has λ -conjugate property for some integer λ which is coprime to e_1 in the sense that

$$c_{i+dj} = c_i^{2^{\lambda j}} \quad \forall 0 \le i < e, 0 \le j < e_1.$$

Moreover, if \underline{c} has the λ -conjugate property, then $D_{\nu}(\underline{c})$ has the 1-conjugate property, where $\nu \lambda = 1 \pmod{e_1}$.

3. Let C = (c_{i,j}) be the square matrix of size e associated with the tuple <u>c</u>, where c_{i,j} = c_{i+j}, 0 ≤ i, j < e, and the index i + j are computed mod e. Then C is invertible. As a consequence, the e-tuple <u>c</u> has no smaller "period" than e. Let ε_i = Tr₁^{e₁}(c_i) = ∑_{0≤j<e1} c_i^{2j}, then
(a) ε_i = ∑_{0≤j<e1} c_{i+dj} for all i, and hence ε_{i+dj} = ε_i, for all 0 ≤ i < d, 0 ≤ j < e₁.
(b) ∑_{0≤k<d} ε_k = 1,
(c) In case when d > 1, there exists at least one k in the range 0 ≤ k < d such that ε_k = 0.

4. For all i = 0, 1, ..., e - 1, $\sum_{0 \le j < e} c_j c_{j+i} = \begin{cases} f + 1 \pmod{2} & \text{if } i \equiv \frac{e\delta(f)}{2} \pmod{e} \\ f \pmod{2} & \text{otherwise,} \end{cases} \pmod{e}$

where the subscripts j + i are computed mod e.

5. In the case when d = 1, which is the *d*-parameter corresponding to the chosen (p, e), the *e*-tuple \underline{c} is *G*-equivalent to an *e*-tuple of the form of $\underline{\theta} = (\theta, \theta^2, \dots, \theta^{2^{e-1}})$ for some θ , where θ is a root of an irreducible polynomial p(x) of degree e_1 over F_2 , and $Tr_1^{e_1}(\theta) = 1$.

IV. Applications

Let p = 2f + 1 be an odd prime and u be a generator of F_p^* . Then, $F_p = \{0\} \cup H_2 \cup uH_2$, where H_2 is the set of quadratic residues mod p and $uH_2 = F_p^* \setminus H_2$ is the set of quadratic non-residues mod p. Let $\mathbf{s} = \{s(t) | t \ge 0\}$ be the Legendre sequence of period p defined by the following:

$$s(t) = \begin{cases} 0 & \text{if } t \in H_2 \\ 1 & \text{otherwise.} \end{cases}$$
(1)

The item 1 of Theorem 1 implies that

$$\mathbf{s} = \underline{1} + \mathbf{b}_{u^0},$$

where <u>1</u> is the all-1 sequence. Note that $\mathbf{a}^* = (a_*, a_0, a_1) = (1, 1, 0)$. Therefore, from the item 3 of Theorem 1, s has a defining pair $(g(x), \beta)$ where

$$g(x) = \rho_* + \rho_0 c_{u^0}(x) + \rho_1 c_{u^1}(x),$$

where

$$\rho_* = 1 + f, \quad \rho_j = c_{-u^j}(\beta), \quad j = 0, 1.$$

School of E.& E. Engineering, Yonsei Univ.

Now, we need to determine the value of $\mathbf{c}_u(\beta) = (c_{u^0}(\beta), c_{u^1}(\beta)) \triangleq (c_0, c_1)$. We need the following:

Lemma 1 Keep the notations so far. Then, the parameter d is the maximum integer that divides e and that $x^d = 2$ has a solution in F_p .

Now, we distinguish two cases where $2 \in H_2$ or $2 \notin H_2$.

Case 1 $(2 \in H_2)$: According to the quadratic reciprocity theorem, $2 \in H_2$ if and only if $p \equiv 1,7 \pmod{8}$, which are equivalent to $f \equiv 0,3 \pmod{4}$, respectively. This implies d = 2 from Lemma 1, and hence, $e_1 = 2/d = 1$. It implies that $c_i \in F_2$ for i = 0, 1. Therefore, from the item 3 of Theorem 3, $(\epsilon_0, \epsilon_1) = (c_0, c_1) = (1, 0)$ or (0, 1) according to the choice of u and β . That is, $C = \{(1, 0), (0, 1)\}$.

Case 2. $(2 \in uH_2)$: This case corresponds to $p \equiv 3, 5 \pmod{8}$, which are equivalent to $f \equiv 1, 2 \pmod{4}$, respectively. We have d = (2, c) = 1, and $e_1 = 2/d = 2$, and hence, $F_2 \subset F_4 = F_{2^{e_1}} \subset F_{2^n}$, and $c_i \in F_4 = \{0, 1, \omega, \omega^2\}$ for i = 0, 1, where ω is a primitive 3-rd root of unity. From Theorem 3, the fact that d = 1 implies $\epsilon_0 = 1 = c_0 + c_1$. Therefore, $c_i \in F_4 \setminus F_2$ for i = 0, 1, and we have $\mathcal{C} = \{(\omega^2, \omega), (\omega, \omega^2)\}$. In conclusion, we may choose $\beta \in <\alpha>^*$ such that for any given generator u of F_p^* , we have

$$(c_{u^0}(\beta), c_u(\beta)) = \begin{cases} (1,0) & \text{if } p = 1 \pmod{8} \\ (0,1) & \text{if } p = 7 \pmod{8} \\ (w^2, w) & \text{if } p = 3 \pmod{8} \\ (w, w^2) & \text{if } p = 5 \pmod{8}, \end{cases}$$

where $\omega \in F_4$ is a primitive 3-rd root of unity. With β and ω chosen as in the above, $(g(x), \beta)$ is a defining pair of s, where

$$g(x) = \frac{p+1}{2} + \begin{cases} c_{u^0}(x) & \text{if } p = \pm 1 \pmod{8} \\ wc_{u^0}(x) + w^2c_{u^1}(x) & \text{if } p = \pm 3 \pmod{8}. \end{cases}$$

The linear complexity of s is given as

$$LC(\mathbf{s}) = \delta(\frac{p+1}{2}) + \begin{cases} \frac{p-1}{2} & \text{if } p = \pm 1 \pmod{8} \\ p-1 & \text{if } p = \pm 3 \pmod{8}. \end{cases}$$

Theorem 4 Let p = ef + 1 be a prime with e = 6 and f odd. Let d be the d-parameter corresponding to the chosen (p, 6). Then

1. (Sextic residue sequences in general) There exist a generator u of F_p^* and $\beta \in <\alpha >^*$ such that

$$\mathbf{c}_{u}(\beta) = \begin{cases} (0, 1, 1, 0, 1, 0) & \text{if } d = 6, \\ (1, 0, w, 1, 0, w^{2}) & \text{if } d = 3, \\ (\gamma, \gamma^{3}, \gamma^{2}, \gamma^{6}, \gamma^{4}, \gamma^{5}) & \text{if } d = 2, \\ (\theta, \theta^{2}, \theta^{4}, \theta^{8}, \theta^{16}, \theta^{32}) & \text{if } d = 1, \end{cases}$$

where

- w is a root of $x^2 + x + 1$,
- γ is a root of $x^3 + x + 1$, and
- $\theta = \rho$ or $\theta = \rho + 1$ where ρ is a root of $x^6 + x^5 + 1$ (and hence, $\rho + 1$ is a root of $x^6 + x^5 + x^2 + x + 1$).
- (Hall's sextic residue sequences) In the case when p = 6f + 1 = 4z² + 27 for some integer z, let s be the Hall's sextic residue sequence of period p which is defined as the characteristic sequence of the Hall's sextic residue different set D = H₆ ∪ u³H₆ ∪ uⁱH₆, where uⁱH₆ is the coset containing 3. Then

(a) There exists a generator u of F_p^* and $\beta \in <\alpha>^*$ such that

$$\mathbf{c}_u(\beta) = \begin{cases} (0, 1, 1, 0, 1, 0) & \text{if } p = 7 \pmod{8} \\ (1, 0, w, 1, 0, w^2) & \text{if } p = 3 \pmod{8} \end{cases}$$

(b) With the choice of u and β as in the above item, $(g(x), \beta)$ is a defining pair of s, where

$$g(x) = \begin{cases} c_{u^0}(x) & \text{if } p = 7 \pmod{8} \\ wc_{u^0}(x) + w^2 c_{u^3}(x) + \sum_{i=1,2,4,5} c_{u^i}(x) & \text{if } p = 3 \pmod{8} \end{cases}$$

(c) The trace representation and linear complexity of s is given as follows:

$$s(t) = \sum_{\substack{0 \le m < c \\ m \equiv 0 \pmod{6}}} \operatorname{Tr}_{1}^{n} \left(\beta^{u^{m}t}\right) = \sum_{\substack{m=0 \\ m=0}}^{c/6-1} \operatorname{Tr}_{1}^{n} \left(\beta^{u^{6}mt}\right), \quad LC = (p-1)/6,$$

$$m \equiv 0 \pmod{6}$$

$$s(t) = \sum_{\substack{0 \le m < c \\ m \equiv 0 \pmod{6}}} \operatorname{Tr}_{1}^{n} \left(\omega\beta^{u^{m}t}\right) + \sum_{\substack{0 \le m < c \\ m \equiv 3 \pmod{6}}} \operatorname{Tr}_{1}^{n} \left(\omega^{2}\beta^{u^{m}t}\right) + \sum_{\substack{0 \le m < c \\ m \not\equiv 0 \pmod{6}}} \operatorname{Tr}_{1}^{n} \left(\beta^{u^{m}t}\right), \quad LC = p-1.$$

Theorem 5 Let p = ef + 1 with e = 4 and f odd. Then

- 1. There exists a generator u of F_p^* with $2 \in uH_4$ and $\beta \in <\alpha >^*$, such that $c_{u^i}(\beta) = (\theta, \theta^2, \theta^4, \theta^8)$, where $\theta = \rho$ or $\rho + 1$, and ρ is a root of the polynomial $x^4 + x^3 + 1$ and is a primitive 15-th root of unity, and hence, $\rho + 1$ is a root of the polynomial $\sum_{0 \leq i \leq 4} x^i$ and is a primitive 5-th root of unity.
- 2. In case when $p = 4f + 1 = 1 + 4z^2$ for some integer z (for this case, it is known that H_4 is a (p, (p-1)/4, (p-5)/16)-cyclic difference set mod p), let s be the characteristic sequence of H_4 . Then $s = \underline{1} + \mathbf{b}_{u^0}$, and it has a defining pair $(g(x), \beta)$, where

$$g(x) = \sum_{0 \le i < 4} \theta^{2^{2+i}} c_{u^i}(x),$$

and θ is described as in the item 1 above. As a consequence, $LC(\mathbf{s}) = p - 1$.

3. In case when $p = 9 + 4z^2$ for some integer z (for this case, it is known that $H_4 \cup \{0\}$ is a (p, (p+3)/4, (p+3)/16)- cyclic difference set mod p), let s be the characteristic sequence of the difference set $H_4 \cup \{0\}$. Then $s = \underline{1} + \mathbf{b}_* + \mathbf{b}_{u^0}$, and it has a defining pair $(g(x), \beta)$, where

$$g(x) = 1 + \sum_{0 \le i < 4} (\theta^{2^{2+i}} + 1) c_{u^i}(x),$$

and θ is described as in the item 1 above. As a consequence, $LC(\mathbf{s}) = p$.

Theorem 6 Let p = ef + 1 with e = 8 and f odd, and assume d = 8, where d is the d-parameter corresponding to (p, e). Then

1. There exist u and $\beta \in <\alpha >^*$ such that $\mathbf{c}_u(\beta) = (c_0, c_1, \cdots, c_7)$, where

 $(c_0, c_1, \cdots, c_7) = (1, 1, 0, 1, 0, 0, 0, 0),$ or its complement (0, 0, 1, 0, 1, 1, 1, 1).

2. In the case when $p = 1+8z^2 = 9+64y^2$ for some odd integers z and y (for this case, it is known that H_8 is a (p, (p-1)/8, (p-7)/64)-cyclic difference set mod p), let s be the characteristic sequence of H_8 . Then $s = \underline{1} + \mathbf{b}_{u^0}$, and it has a defining pair $(g(x), \beta)$, where

$$g(x) = \sum_{0 \le i < 8} c_{4+i} c_{u^i}(x),$$

the indexes 4 + i is modulo 8, and c_i is described as in the item 1 above.

3. In the case when $p = 49 + 8z^2 = 441 + 64y^2$ for some odd integers z and y (for this case, it is known that $D = H_8 \cup \{0\}$ is a (p, (p+7)/8, (p+7)/64)-cyclic difference set mod p), let s be the characteristic sequence of $D = H_8 \cup \{0\}$. Then $s = \underline{1} + b_* + b_{u^0}$, and it has a defining pair $(g(x), \beta)$, where

$$g(x) = 1 + \sum_{0 \le i < 8} (c_{4+i} + 1)c_{u^i}(x),$$

the subscript 4 + i is computed mod 8, and c_i is described as in the item 1 above.

Theorem 7 Let p = 31, e = 10, and let **s** be the characteristic sequence of the cyclic difference set $D = H_{10} \cup 11H_{10} = \{i \pmod{31} \mid i = 1, 5, 11, 24, 25, 27\}$. Let β be a root of the polynomial $x^5 + x^2 + 1$. Then 1. $\mathbf{c}_{11}(\beta) = (c_0, c_1, \dots, c_9)$, where $c_{2j} = \beta^{-7 \cdot 2^{4j}}$, $c_{2j+1} = \beta^{-2^{4j}}$, $0 \le j < 5$. 2. $\mathbf{s} = \underline{1} + \mathbf{b}_1 + \mathbf{b}_{11}$.

3. *Let*

$$g(x) = 1 + \sum_{0 \le j < 5} \left(\beta^{11 \cdot 2^{4j}} c_{11^{2j}}(x) + \beta^{18 \cdot 2^{4j}} c_{11^{2j+1}}(x) \right)$$

Then $(g(x), \beta)$ is a defining pair of s.

- Binary sequences (of period p) of all the cyclic difference sets D which are some union of cosets of e-th powers in F_p^* for $e \le 12$ are studied in terms of
 - their defining pairs,
 - trace representations,
 - linear complexities.
- In particular, linear complexities of all the *e*-th residue sequences are determined whenever $d = \gcd(e, (p-1)/n) = 1$, where *n* is the order of 2 mod *p*.
- How to evaluate the $e\text{-tuple}~(c_{u^0}(\beta),...,c_{u^{e-1}}(\beta))$ for some u and β whenever a prime p=ef+1 is given ?
- Open Problem: Which one among the two values ρ and ρ + 1 the element θ in Theorem 4 or in Theorem 5 takes has not been determined yet, and we do not know whether both values will be taken when p changes; and the same problem for the tuple (c₀, c₁, ..., c₇) in Theorem 6.