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I. Introduction

� In this presentation, we would like to announce that ...

• We define binary e-th residue sequences s = {s(t)|t ≥ 0} of period p = 1 + ef
that is constant on the cosets of F ∗

p mod He.

• We try to give a general description on their

1. defining pairs of the form (g(x), β) such that s(t) = g(βt) for t = 0, 1, 2, ...,

2. trace representations, and

3. minimal polynomials, and hence, their linear complexities.

• For simplicity, we considered (and were able to give answers to) all e-th residue
sequences for e = 2 and e = 6, and the e-th residue sequences that are
characteristic sequences of e-th power residue cyclic difference sets for e = 4, 8,
and 10 (as given in Baumert ’71 or Storer ’67 or Berndt, Evans, and Williams
’98)

• The methodology will work for any e-th residue sequences whether they are
characteristic sequences of some cyclic difference sets or not.
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• A (v, k, λ) cyclic difference set D is a k-subset of Zv
�
= Z/vZ such that for all

non-zero d ∈ Zv the equation

x − y ≡ d (mod v)

has exactly λ solution pairs (x, y) with x, y ∈ D.

• A binary sequence s = {s(t)|t ≥ 0} (or “the characteristic sequence”) of a
(v, k, λ)-CDS of period v, defined by s(t) = 0 iff t ∈ D, has 2-level autocorre-
lation values, given as

φ(τ ) =

{
v τ ≡ 0 (mod v)
v − 4(k − λ) τ �≡ 0 (mod v).

• A cyclic Hadamard difference set is a (v, (v − 1)/2, (v − 3)/4)-cyclic difference
set, and known to be equivalent to a balanced binary sequence of period v with
ideal autocorrelation: φ(τ ) = −1 for all τ �≡ 0 (mod v). .
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Conjecture 1 If a cyclic Hadamard difference set of length v
exists, then v must be either

(i) a prime congruent to 3 mod 4,
(ii) a product of twin primes, or
(iii) one less than a power of 2.

• A series of computer search confirms the conjecture is true for
v < 10000 except possibly for the following 13 cases: 3439, 4355,
4623, 5775, 7395, 7743, 8227, 8463, 8591, 8835, 9135, 9215, and
9423.
1. H. -Y. Song and S. W. Golomb, “On the existence of cyclic Hadamard difference sets,” IEEE Trans.

Inform. Theory, vol. 40, no. 4, pp. 1266-1268, July 1994.

2. J. -H. Kim and H. -Y. Song, ”Existence of Cyclic Hadamard Difference Sets and its Relation to Binary
Sequences with Ideal Autocorrelation,” Journal of Communications and Networks, vol. 1, no.1, pp. 14-18,
March 1999.

3. J. -H. Kim, On the Hadamard Sequences, PhD Thesis, Dept Electronics Engineering, Yonsei University,
Feb. 2002.

Hong-Yeop Song School of E.& E. Engineering, Yonsei Univ.



Coding and Information Theory Lab. 5/30

• For those three types of v, we have the following constructions:

1. v = p ≡ 3 (mod 4) is a prime:

(a) Quadratic residue construction works for all such p.

(b) Hall’s sextic residue construction works for p = 4x2 + 27.

2. v = p(p + 2) is a product of twin primes:

(a) Generalization of “Quadratic residue construction” works.

3. v = 2t − 1 for t = 1, 2, 3, ....

(a) m-sequence (or maximal LFSR sequence) for all such t.

(b) GMW construction for all “composite” t.

(c) 3-term trace sequences, 5-term trace sequences

(d) hyperoval type (Segre Type, and Glyn Type I and Type II)

Hong-Yeop Song School of E.& E. Engineering, Yonsei Univ.
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Example 1 Binary sequences of period 31 = 4 · 12 + 27 = 1 + 6 · 5. Note that 3
is a generator of F ∗

31 and we have

Cosets Legendre Hall’s sextic
C∗ = {0}
C0 = {1, 2, 4, 8, 16} x x
C1 = {3, 6, 12, 24, 17} x
C2 = {9, 18, 5, 10, 20} x
C3 = {27, 23, 15, 30, 29} x
C4 = {19, 7, 14, 28, 25} x
C5 = {26, 21, 11, 22, 13}

i : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

a(i) : 1 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 1 1 1 0 1 1 0 1 1

b(i) : 1 0 0 0 0 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0

• The Hall’s sextic residue sequence b(i) turns out to be equivalent to m-sequence
of period 31 = 25 − 1.
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• Motivation of the current research

1. Those of length type (i) or type (ii) are originally constructed much differently
from those of length type (iii) that can naturally be described using a trace
function or a sum of trace functions.

2. So, what is the trace representation of those of length type (i) or (ii) ?

3. What are their minimal polynomials (and hence, the linear complexity) ?

4. Will it help to settle the conjecture ? — Well, not much yet...

Hong-Yeop Song School of E.& E. Engineering, Yonsei Univ.
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• Historical Review on ”Quadratic residue sequences”

1. (Turyn ’64) Linear generation of quadratic residue sequences

2. (Pott, ’92) Abelian difference set codes

3. (No, Chung, Yang, Song, ’96) Trace representation of Legendre sequences of Mersenne prime period

4. (Ding, Helleseth, Shan, ’98) Linear complexity of Legendre sequences

5. (Kim, Song, ’01) Trace representation of Legendre sequences

• on ”Hall’s sextic residue sequences”

1. (Lee, No, Chung, Yang, Kim, Song, ’97) Trace representation for Mersenne Prime periods:31, 127, and
131071.

2. (Kim, Song, ’01) Linear complexity of Hall’s sextic residue sequences

3. (Kim, Gong, Song, ’02) Trace representation of HSR sequences of period p ≡ 7 (mod 8).

4. This paper completes ”trace representation of HSR sequences” including the case p ≡ 3 (mod 8)

• on twin-prime sequences

1. (Ding, ’97) Linear complexity of generalized cyclotomic sequences of order 2

2. (Kim, Song, ’99) Linear complexity of binary Jacobi sequences (unpublished)

3. (Dai, Gong, Song, ’02) Trace representation of binary Jacobi sequences (submitted)

• The conjecture is still widely open !

Hong-Yeop Song School of E.& E. Engineering, Yonsei Univ.



Coding and Information Theory Lab. 9/30

II. e-th residue sequences and their trace
representations

• p is an odd prime, and p = ef + 1 for some e, f

• F ∗
p = Fp\{0} and He = {xe | x ∈ F ∗

p }
• α be a primitive p-th root of unity, and let < α >∗=< α > \{1}
• n is the order of 2 mod p, c = (p−1)/n, d = gcd(c, e), c1 = c/d, and e1 = e/d

so that

ef = p − 1 = cn, (p − 1)/d = e1f = c1n, and (e1, c1) = 1.

• LC(s) is the linear complexity of a binary sequence s

• wH(ρ) is the Hamming weight of a tuple ρ over F

• δ(x) = 1 (or 0) if the integer x is odd (or even), respectively.

Hong-Yeop Song School of E.& E. Engineering, Yonsei Univ.
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Definition 1 (e-th residue sequences) Let s = {s(t)|t ≥ 0} be a binary se-
quence of period p = ef + 1. Then, we say s is an e-th residue sequence if s(t)
is constant on each of the cosets kHe = { kx | x ∈ He } of He in F ∗

p , that is, if
s(t1) = s(t2) whenever t1He = t2He.

Example 2 (single coset sequences) Given any coset kHe, let bkHe = {b(t)|t ≥
0}, where b(t) = 1 for t ∈ kHe and b(t) = 0 otherwise, then bkHe is an e-th residue
sequence.

Example 3 Let 1 = {b(t)|t ≥ 0}, where b(t) = 1 for all t; and let b∗ = {b(t)|t ≥
0}, where b(t) = 1 if t = 0 (mod p) and b(t) = 0 otherwise, then these two are
also e-th residue sequences.

Hong-Yeop Song School of E.& E. Engineering, Yonsei Univ.
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We will denote the sequence bkHe simply by bk with k ∈ F ∗
p . It is clear there

are only e distinct sequences in the set {bk|k ∈ F ∗
p }, and they can be represented

by bui, for 0 ≤ i < e, where u is any given generator of the group F ∗
p . It is clear

that b1 = bu0 for any u, and that

1 = b∗ +
∑

0≤i<e

bui.

The generating polynomial of each coset kHe is important in expressing the trace
representations of e-th residue sequences, it is defined as

ckHe(x) =
∑

i∈kHe

xi (mod xp − 1),

which will also be denoted simply by ck(x) where k ∈ F ∗
p .

Definition 2 Given a binary sequence s = {s(t)|t ≥ 0} of period p, we say
(g(x), β) form a defining pair of s if s(t) = g(βt) for t = 0, 1, 2, ..., where g(x) is
a polynomial modulo xp − 1 over F and β ∈< α >∗. We call g(x) the defining
polynomial of s, and β the corresponding defining element.

Hong-Yeop Song School of E.& E. Engineering, Yonsei Univ.
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Theorem 1 Let p = ef + 1.

1. Let L be the set of all e-th residue sequences of period p. Then L is a vector
space over F2 of dimension 1 + e, and {bui|0 ≤ i < e} ∪ {1} is a basis of L
over F2, where u is any given generator of F ∗

p ; i.e., any e-th residue sequence
in L can be expressed uniquely in the form of

sa∗ = a∗1 +
∑

0≤i<e

aibui,

for some binary (1 + e)-tuple a∗ = (a∗, a0, a1, ..., ai, ..., ae−1).

2. Keep the notations in the above item, and let β ∈< α >∗. Corresponding to
a∗ and β, define ⎧⎨

⎩
ρ∗ = a∗ + f

∑
0≤i<e ai,

ρj =
∑

0≤i<e aic−ui+j(β)

and define
g(x) = ρ∗ +

∑
0≤j<e

ρjcuj(x).

Then (g(x), β) is a defining pair of sa∗.

Hong-Yeop Song School of E.& E. Engineering, Yonsei Univ.
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3. Keep the notations in the above items. Then

LC(sa∗) = δ(ρ∗) + wH(ρ)f,

where
ρ = (ρ0, ρ1, · · · , ρi, · · · , ρe−1),

which is given in the item 2 above.

4. Keep the notations in the above items. Let sa∗ = {s(t)|t ≥ 0}. With the
knowledge of the defining pair of sa∗ as shown in the item 2 above, its a trace
representation can be obtained immediately as follows:

s(t) = ρ∗ +
∑

0≤i<e

Trn1

⎛
⎜⎜⎜⎝ρi

∑
0 ≤ j < c,

j = i (mod e)

βujt

⎞
⎟⎟⎟⎠ , ∀t,

where Trn1(x) =
∑

0≤i<n x2i
is the trace of x from F2n to F2.

Hong-Yeop Song School of E.& E. Engineering, Yonsei Univ.
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Proof. The item 1 is obvious. For the item 2, we let r(x) =
∑

0≤k<p rkx
k

(mod xp − 1) be the defining polynomial of bui corresponding to β, and take the
inverse Fourier transform:

bui(t) = r(βt) =
∑

0≤k<p

rkβ
kt, or rk =

∑
0≤t<p

bui(t)β−kt.

For k = 0,
r0 =

∑
0≤t<p

bui(t) = |uiHe| = f.

For k ∈ F ∗
p , we have

rk =
∑

0≤t<p

bui(t)β−kt =
∑

t∈uiHe

β−kt =
∑

t∈−kuiHe

βt = c−kui(β).

Note that if kHe = lHe then −kuiHe = −luiHe, and hence

rk = c−kui(β) = c−lui(β) = rl.

Therefore, rk depends only on the coset of He in F ∗
p to which k belongs. Denoting

k = uj ∈ F ∗
p for j with 0 ≤ j < p − 1, we obtain the following useful relation:

ruj = c−ui+j(β) = c−ui+j+em(β) = ruj+em, ∀m.

Hong-Yeop Song School of E.& E. Engineering, Yonsei Univ.



Coding and Information Theory Lab. 15/30

Therefore,

r(x) = f +
∑

1≤k<p

rkx
k = f +

∑
0≤j<p−1

rujxuj
= f +

∑
0≤j<e

∑
0≤k<f

ruj+ekxuj+ek

= f +
∑

0≤j<e

ruj

∑
0≤k<f

xuj+ek
= f +

∑
0≤j<e

c−ui+j(β)cuj(x)
�
= gui(x).

Clearly, (g1(x) = 1, β) is a defining pair of the all-1 sequence 1. Therefore,

g(x) = a∗ +
∑

0≤i<e

aigui(x)

= a∗ +
∑

0≤i<e

ai

⎛
⎝f +

∑
0≤j<e

c−ui+j(β)cuj(x)

⎞
⎠

= a∗ + f
∑

0≤i<e

ai +
∑

0≤j<e

( ∑
0≤i<e

aic−ui+j(β)

)
cuj(x)

= ρ∗ +
∑

0≤j<e

ρjcuj(x).

Hong-Yeop Song School of E.& E. Engineering, Yonsei Univ.
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The item 3 is obvious since LC is given as the number of non-zero terms in g(x).
For trace representation in the item 4, we first determine the trace representation
of bui as follows: Since it is a binary sequence, we have, using r(x) = gui(x)
(mod xp − 1),∑

0≤k<p

r2
kβ

2t = r(βt)2 = bui(t)2 = bui(t) = r(βt) =
∑

0≤k<p

rkβ
t,

or
r2
k = r2k or r2l

k = r2lk ∀l.

Since both 2 and uc have order n, we have < 2 >=< uc > and

F ∗
p =

⋃
0≤i<c

ui < uc >=
⋃

0≤i<c

ui < 2 >.

Therefore, we have

bui(t) = r0 +
∑

0≤j<p−1

rujβujt = r0 +
∑

0 ≤ j < c

0 ≤ l < n

ruj2lβuj2lt = r0 +
∑

0 ≤ j < c

0 ≤ l < n

(
rujβujt

)2l

= r0 +
∑

0≤j<c

Trn1

(
rujβujt

)
= f +

∑
0≤j<c

Trn1

(
c−ui+j(β)βujt

)
.

Hong-Yeop Song School of E.& E. Engineering, Yonsei Univ.
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Therefore, we have

s(t) = a∗ +
∑

0≤i<e

aibui(t)

= a∗ +
∑

0≤i<e

ai

⎛
⎝f +

∑
0≤j<c

Trn1

(
c−ui+j(β)βujt

)⎞
⎠

= a∗ + f
∑

0≤i<e

ai +
∑

0≤j<c

Trn1

( ∑
0≤i<e

aic−ui+j(β)βujt

)

= ρ∗ +
∑

0≤j<c

Trn1

(
ρjβ

ujt
)

= ρ∗ +
∑

0≤i<e

Trn1

⎛
⎜⎜⎜⎝ρi

∑
0 ≤ j < c

j = i (mod e)

βujt

⎞
⎟⎟⎟⎠ .

Hong-Yeop Song School of E.& E. Engineering, Yonsei Univ.
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Theorem 2 Let p = ef + 1, and let d be the d-parameter corresponding to the
chosen (p, e). Keep the notation in Theorem 1.

1. The linear complexity of any e-th residue sequence of period p must be of the
form ε + ke1f for some k ∈ {0, 1, 2, ..., d} and ε ∈ {0, 1}. Moreover, denote
by Nε+ke1f the total number of the e-th residue sequences of period p with the
linear complexity being equal to ε + ke1f . Then

Nε+ke1f =

(
d
k

)
(2e1 − 1)k.

2. In the case when d = 1, we have Np−1 = Np = 2e − 1, and N0 = N1 = 1;
moreover, let sa∗ be the sequence as given in Theorem 1, then

LC(sa∗) =

⎧⎨
⎩

p − 1 + δ(a∗ + fwH(a)) if a �= (0, 0, ..., 0),
1 if a = (0, 0, ..., 0), a∗ = 1,
0 otherwise,

where we use the notation a = (a0, a1, ..., ae−1).

Hong-Yeop Song School of E.& E. Engineering, Yonsei Univ.
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III. e-tuples

Based on Theorem 1, it is enough to focus on the e-tuple of the form

cu(β) = (cu0(β), cu1(β), ..., cue−1(β))

for trace representation and minimal polynomials, etc.
We consider the set C of the e-tuples cu(β) over all possible generators u of F ∗

p

and all β ∈< α >∗. That is,

C � {cu(β) | < u >= F ∗
p , β ∈< α >∗}.

Then, it is an equivalence class under the group G � < {L, Dλ | gcd(λ, e) =
1, 0 < λ < e } > where

Lx = (x1, x2, · · · , xe−1, x0), ∀x = (x0, x1, ..., xe−1),

Dλx = (x0, xλ, x2λ, ..., x(e−1)λ), ∀x = (x0, x1, ..., xe−1).

Hong-Yeop Song School of E.& E. Engineering, Yonsei Univ.
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Theorem 3 Let c = (c0, c1, · · · , ce−1) ∈ C, then

1. ci ∈ F2e1 for all i.

2. c has λ-conjugate property for some integer λ which is coprime to e1 in the
sense that

ci+dj = c2λj

i ∀0 ≤ i < e, 0 ≤ j < e1.

Moreover, if c has the λ-conjugate property, then Dν(c) has the 1-conjugate
property, where νλ = 1 (mod e1).

3. Let C = (ci,j) be the square matrix of size e associated with the tuple c, where
ci,j = ci+j, 0 ≤ i, j < e, and the index i + j are computed mod e. Then C is
invertible. As a consequence, the e-tuple c has no smaller ”period” than e. Let
εi = Tre1

1 (ci) =
∑

0≤j<e1
c2j

i , then

(a) εi =
∑

0≤j<e1
ci+dj for all i, and hence εi+dj = εi, for all 0 ≤ i < d, 0 ≤

j < e1.

(b)
∑

0≤k<d εk = 1,

(c) In case when d > 1, there exists at least one k in the range 0 ≤ k < d
such that εk = 0.

Hong-Yeop Song School of E.& E. Engineering, Yonsei Univ.
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4. For all i = 0, 1, ..., e − 1,∑
0≤j<e

cjcj+i =

{
f + 1 (mod 2) if i ≡ eδ(f)

2 (mod e)
f (mod 2) otherwise,

where the subscripts j + i are computed mod e.

5. In the case when d = 1, which is the d-parameter corresponding to the cho-
sen (p, e), the e-tuple c is G-equivalent to an e-tuple of the form of θ =

(θ, θ2, . . . , θ2e−1
) for some θ, where θ is a root of an irreducible polynomial

p(x) of degree e1 over F2, and Tre1
1 (θ) = 1.

Hong-Yeop Song School of E.& E. Engineering, Yonsei Univ.
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IV. Applications

Let p = 2f + 1 be an odd prime and u be a generator of F ∗
p . Then, Fp =

{0}∪H2∪uH2, where H2 is the set of quadratic residues mod p and uH2 = F ∗
p \H2

is the set of quadratic non-residues mod p. Let s = {s(t)|t ≥ 0} be the Legendre
sequence of period p defined by the following:

s(t) =

{
0 if t ∈ H2

1 otherwise.
(1)

The item 1 of Theorem 1 implies that

s = 1 + bu0,

where 1 is the all-1 sequence. Note that a∗ = (a∗, a0, a1) = (1, 1, 0). Therefore,
from the item 3 of Theorem 1, s has a defining pair (g(x), β) where

g(x) = ρ∗ + ρ0cu0(x) + ρ1cu1(x),

where
ρ∗ = 1 + f, ρj = c−uj(β), j = 0, 1.

Hong-Yeop Song School of E.& E. Engineering, Yonsei Univ.
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Now, we need to determine the value of cu(β) = (cu0(β), cu1(β)) � (c0, c1). We
need the following:

Lemma 1 Keep the notations so far. Then, the parameter d is the maximum
integer that divides e and that xd = 2 has a solution in Fp.

Now, we distinguish two cases where 2 ∈ H2 or 2 �∈ H2.

Case 1 (2 ∈ H2): According to the quadratic reciprocity theorem, 2 ∈ H2

if and only if p ≡ 1, 7 (mod 8), which are equivalent to f ≡ 0, 3 (mod 4),
respectively. This implies d = 2 from Lemma 1, and hence, e1 = 2/d = 1. It
implies that ci ∈ F2 for i = 0, 1. Therefore, from the item 3 of Theorem 3,
(ε0, ε1) = (c0, c1) = (1, 0) or (0, 1) according to the choice of u and β. That
is, C = {(1, 0), (0, 1)}.

Case 2. (2 ∈ uH2): This case corresponds to p ≡ 3, 5 (mod 8), which are
equivalent to f ≡ 1, 2 (mod 4), respectively. We have d = (2, c) = 1, and
e1 = 2/d = 2, and hence, F2 ⊂ F4 = F2e1 ⊂ F2n, and ci ∈ F4 = {0, 1, ω, ω2}
for i = 0, 1, where ω is a primitive 3-rd root of unity. From Theorem 3, the
fact that d = 1 implies ε0 = 1 = c0 + c1. Therefore, ci ∈ F4\F2 for i = 0, 1,
and we have C = {(ω2, ω), (ω, ω2)}.

Hong-Yeop Song School of E.& E. Engineering, Yonsei Univ.
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In conclusion, we may choose β ∈< α >∗ such that for any given generator u of
F ∗

p , we have

(cu0(β), cu(β)) =

⎧⎪⎪⎨
⎪⎪⎩

(1, 0) if p = 1 (mod 8)
(0, 1) if p = 7 (mod 8)

(w2, w) if p = 3 (mod 8)
(w, w2) if p = 5 (mod 8),

where ω ∈ F4 is a primitive 3-rd root of unity. With β and ω chosen as in the
above, (g(x), β) is a defining pair of s, where

g(x) =
p + 1

2
+

{
cu0(x) if p = ±1 (mod 8)
wcu0(x) + w2cu1(x) if p = ±3 (mod 8).

The linear complexity of s is given as

LC(s) = δ(
p + 1

2
) +

{
p−1
2 if p = ±1 (mod 8)

p − 1 if p = ±3 (mod 8).

Hong-Yeop Song School of E.& E. Engineering, Yonsei Univ.
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Theorem 4 Let p = ef + 1 be a prime with e = 6 and f odd. Let d be the
d-parameter corresponding to the chosen (p, 6). Then

1. (Sextic residue sequences in general) There exist a generator u of F ∗
p and

β ∈< α >∗ such that

cu(β) =

⎧⎪⎪⎨
⎪⎪⎩

(0, 1, 1, 0, 1, 0) if d = 6,
(1, 0, w, 1, 0, w2) if d = 3,
(γ, γ3, γ2, γ6, γ4, γ5) if d = 2,
(θ, θ2, θ4, θ8, θ16, θ32) if d = 1,

where

• w is a root of x2 + x + 1,

• γ is a root of x3 + x + 1, and

• θ = ρ or θ = ρ + 1 where ρ is a root of x6 + x5 + 1 (and hence, ρ + 1 is a
root of x6 + x5 + x2 + x + 1).

2. (Hall’s sextic residue sequences) In the case when p = 6f + 1 = 4z2 + 27 for
some integer z, let s be the Hall’s sextic residue sequence of period p which is
defined as the characteristic sequence of the Hall’s sextic residue different set
D = H6 ∪ u3H6 ∪ uiH6, where uiH6 is the coset containing 3. Then

Hong-Yeop Song School of E.& E. Engineering, Yonsei Univ.
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(a) There exists a generator u of F ∗
p and β ∈< α >∗ such that

cu(β) =

{
(0, 1, 1, 0, 1, 0) if p = 7 (mod 8)
(1, 0, w, 1, 0, w2) if p = 3 (mod 8)

(b) With the choice of u and β as in the above item, (g(x), β) is a defining
pair of s, where

g(x) =

{
cu0(x) if p = 7 (mod 8)
wcu0(x) + w2cu3(x) +

∑
i=1,2,4,5 cui(x) if p = 3 (mod 8)

(c) The trace representation and linear complexity of s is given as follows:

s(t) =
∑

0 ≤ m < c

m ≡ 0 (mod 6)

Trn1
(
βumt

)
=

c/6−1∑
m=0

Trn1

(
βu6mt

)
, LC = (p − 1)/6,

s(t) =
∑

0 ≤ m < c

m ≡ 0 (mod 6)

Trn1
(
ωβumt

)
+

∑
0 ≤ m < c

m ≡ 3 (mod 6)

Trn1
(
ω2βumt

)
+

∑
0 ≤ m < c

m �≡ 0 (mod 3)

Trn1
(
βumt

)
, LC = p − 1.
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Theorem 5 Let p = ef + 1 with e = 4 and f odd. Then

1. There exists a generator u of F ∗
p with 2 ∈ uH4 and β ∈< α >∗, such that cui(β) =

(θ, θ2, θ4, θ8), where θ = ρ or ρ + 1, and ρ is a root of the polynomial x4 + x3 + 1 and is a

primitive 15-th root of unity, and hence, ρ + 1 is a root of the polynomial
∑

0≤i≤4 xi and is a

primitive 5-th root of unity.

2. In case when p = 4f + 1 = 1 + 4z2 for some integer z (for this case, it is known that H4 is a

(p, (p − 1)/4, (p − 5)/16)-cyclic difference set mod p), let s be the characteristic sequence of

H4. Then s = 1 + bu0, and it has a defining pair (g(x), β), where

g(x) =
∑

0≤i<4

θ22+i
cui(x),

and θ is described as in the item 1 above. As a consequence, LC(s) = p − 1.

3. In case when p = 9 + 4z2 for some integer z (for this case, it is known that H4 ∪ {0} is a

(p, (p + 3)/4, (p + 3)/16)- cyclic difference set mod p), let s be the characteristic sequence of

the difference set H4 ∪{0}. Then s = 1 +b∗ +bu0, and it has a defining pair (g(x), β), where

g(x) = 1 +
∑

0≤i<4

(θ22+i
+ 1)cui(x),

and θ is described as in the item 1 above. As a consequence, LC(s) = p.
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Theorem 6 Let p = ef + 1 with e = 8 and f odd, and assume d = 8, where d is the d-parameter

corresponding to (p, e). Then

1. There exist u and β ∈< α >∗ such that cu(β) = (c0, c1, · · · , c7), where

(c0, c1, · · · , c7) = (1, 1, 0, 1, 0, 0, 0, 0), or its complement (0, 0, 1, 0, 1, 1, 1, 1).

2. In the case when p = 1+8z2 = 9+64y2 for some odd integers z and y (for this case, it is known

that H8 is a (p, (p − 1)/8, (p − 7)/64)-cyclic difference set mod p), let s be the characteristic

sequence of H8. Then s = 1 + bu0, and it has a defining pair (g(x), β), where

g(x) =
∑

0≤i<8

c4+icui(x),

the indexes 4 + i is modulo 8, and ci is described as in the item 1 above.

3. In the case when p = 49 + 8z2 = 441 + 64y2 for some odd integers z and y (for this case, it is

known that D = H8 ∪ {0} is a (p, (p + 7)/8, (p + 7)/64)-cyclic difference set mod p), let s be

the characteristic sequence of D = H8 ∪ {0} . Then s = 1 + b∗ + bu0, and it has a defining

pair (g(x), β), where

g(x) = 1 +
∑

0≤i<8

(c4+i + 1)cui(x),

the subscript 4 + i is computed mod 8, and ci is described as in the item 1 above.
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Theorem 7 Let p = 31, e = 10, and let s be the characteristic sequence of the
cyclic difference set D = H10 ∪ 11H10 = {i (mod 31) | i = 1, 5, 11, 24, 25, 27}.
Let β be a root of the polynomial x5 + x2 + 1. Then

1. c11(β) = (c0, c1, · · · , c9) , where c2j = β−7·24j
, c2j+1 = β−24j

, 0 ≤ j < 5.

2. s = 1 + b1 + b11.

3. Let
g(x) = 1 +

∑
0≤j<5

(
β11·24j

c112j(x) + β18·24j
c112j+1(x)

)
.

Then (g(x), β) is a defining pair of s.
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V. Concluding remarks

• Binary sequences (of period p) of all the cyclic difference sets D which are some
union of cosets of e-th powers in F ∗

p for e ≤ 12 are studied in terms of

– their defining pairs,

– trace representations,

– linear complexities.

• In particular, linear complexities of all the e-th residue sequences are determined
whenever d = gcd(e, (p − 1)/n) = 1, where n is the order of 2 mod p.

• How to evaluate the e-tuple (cu0(β), ..., cue−1(β)) for some u and β whenever
a prime p = ef + 1 is given ?

• Open Problem: Which one among the two values ρ and ρ + 1 the element
θ in Theorem 4 or in Theorem 5 takes has not been determined yet, and we
do not know whether both values will be taken when p changes; and the same
problem for the tuple (c0, c1, · · · , c7) in Theorem 6.
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