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Cyclic difference sets and characteristic sequences

• A (v, k, λ) cyclic difference set D is a k-subset of Zv
�
= Z/vZ such that for all

non-zero d ∈ Zv the equation x− y ≡ d (mod v) has exactly λ solution pairs
(x, y) with x, y ∈ D.

• The set {1, 3, 4, 5, 9} ⊂ Z11 is a (11, 5, 2)-CDS, since

− 1 3 4 5 9
1 0 9 8 7 3
3 2 0 10 9 5
4 3 1 0 10 6
5 4 2 1 0 7
9 8 6 5 4 0

• A binary sequence s = {s(t)|t ≥ 0} (or “the characteristic sequence”) of a
(v, k, λ)-CDS of period v is defined by s(t) = 0 iff t ∈ D.
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• An e-th power residue cyclic difference set mod p = ef + 1 is a (v = p, k, λ)
CDS which are some union of cosets of the subgroup He of e-th powers in F ∗

p ,
with or without {0}.

• (Storer ’67, Baumert ’71, Berndt-Evans-Williams ’98) The ONLY e-th power
residue cyclic difference sets for e ≤ 12 are the following:

e D (v, k, λ) when

2 H2 (p, p−1
2 , p−3

4 ) p = 4z + 3 [hadamard]

6 H6 ∪ u3H6 ∪ u1H6 (p, p−1
2 , p−3

4 ) p = 4z2 + 27 (3 ∈ uH6) [hadamard]

4 H4 (p, p−1
4 , p−5

16 ) p = 1 + 4z2

H4 ∪ {0} (p, p+3
4 , p+3

16 ) p = 9 + 4z2

8 H8 (p, p−1
8 , p−7

64 ) p = 1 + 8z2 = 9 + 64y2 (odd z, y)

H8 ∪ {0} (p, p+7
8 , p+7

64 ) p = 49 + 8z2 = 441 + 64y2 (odd z, y)

10 H10 ∪ uH10 (31, 6, 1) p = 31 (use u = 11) [single case]
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• A cyclic Hadamard difference set is a (v, (v − 1)/2, (v − 3)/4)-cyclic difference
set and are equivalent to balanced binary sequences with the ideal autocorrela-
tion.

• KNOWN three types of v for which a cyclic Hadamard difference set exists:

1. v = p ≡ 3 (mod 4) is a prime:
(a) Quadratic residue construction works for all such p.

(b) Hall’s sextic residue construction works for p = 4x2 + 27.

2. v = p(p + 2) is a product of twin primes:
(a) Generalization of “Quadratic residue construction” works.

3. v = 2t − 1 for t = 1, 2, 3, ....
(a) m-sequence (or maximal LFSR sequence) for all such t.

(b) GMW construction for all “composite” t.

(c) 3-term trace sequences, 5-term trace sequences

(d) hyperoval type (Segre Type, and Glyn Type I and Type II)

(e) what else ?? (conjecture: no more for odd t. Checked partially for t ≤ 17 by Gong-

Golomb ’02, and completely for t ≤ 10 by many others.)

• conjecture: no more v for CHDS. Checked for v < 10000 by Song-Golomb ’94,
Kim-Song ’99.
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• Cyclic Hadamard difference sets which are some union of cosets of sextic residues
in F ∗

31. (Example for e = 6)

Cosets Legendre Hall’s sextic
C∗ = {0}
C0 = {1, 2, 4, 8, 16} x x
C1 = {3, 6, 12, 24, 17} x
C2 = {9, 18, 5, 10, 20} x
C3 = {27, 23, 15, 30, 29} x
C4 = {19, 7, 14, 28, 25} x
C5 = {26, 21, 11, 22, 13}

• Their characteristic sequences are:

i : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

a(i) : 1 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 1 1 1 0 1 1 0 1 1

b(i) : 1 0 0 0 0 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0

The Hall’s sextic residue sequence b(i) turns out to be equivalent to the m-
sequence of period 31 = 25 − 1.
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e-th residue sequences and their trace representations

Definition 1 (e-th residue sequences) Let s = {s(t)|t ≥ 0} be a binary se-
quence of period p = ef + 1. Then, we say s is an e-th residue sequence if s(t)
is constant on each of the cosets kHe = { kx | x ∈ He } of He in F ∗

p , that is, if
s(t1) = s(t2) whenever t1He = t2He.

• 1 = {b(t) = 1|t ≥ 0}

• b∗ = {b(t)|t ≥ 0}, where b(t) =

{
1, t = 0 (mod p)
0, otherwise

.

• bkHe

�
= bk = {b(t)|t ≥ 0}, where b(t) =

{
1, t ∈ kHe

0, otherwise
.

• Legendre sequence: s = 1 + b1.

• Hall’s sextic residue sequence: s = 1 + b1 + bu + bu3.

• In general, we have 1 = b∗ +
∑

0≤i<e bui.
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Theorem 0

• The set of all the e-th residue sequences of period p is a vector space over F2

of dimension 1 + e.

• {bui|0 ≤ i < e} ∪ {1} is a basis over F2, where u is any given generator of
F ∗

p ; i.e., any e-th residue sequence of period p can be expressed in the form of

sa∗ = a∗1 +
∑

0≤i<e

aibui,

for some unique binary (1 + e)-tuple a∗ = (a∗, a0, a1, ..., ai, ..., ae−1).
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Definition 2 Given a binary sequence s = {s(t)|t ≥ 0} of period p, we say
(g(x), β) form a defining pair of s if s(t) = g(βt) for t = 0, 1, 2, ..., where

• g(x) is a polynomial modulo xp − 1 over F , and

• β ∈< α >∗.

We call g(x) the defining polynomial of s, and β the corresponding defining element.

Let the generating polynomial of a coset ujHe be given as

cujHe
(x) = cuj(x) =

∑
i∈ujHe

xi =
∑

0≤i<f

xuj+ei
(mod xp − 1)
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Theorem 1 Let p = ef + 1 be a prime for some e and f .

1. sa∗ = a∗1 +
∑

0≤i<e aibui, for some unique a∗ = (a∗, a0, a1, ..., ai, ..., ae−1).

2. sa∗ has the defining pair (g(x), β) where

g(x) = ρ∗ +
∑

0≤j<e

ρjcuj(x),

where ρ∗ = a∗ + f
∑

0≤i<e ai and ρj =
∑

0≤i<e aic−ui+j(β).

3. LC(sa∗) = δ(ρ∗) + wH(ρ)f, where δ(·) = 1 or 0; wH(...) is the Hamming
weight; and

ρ = (ρ0, ρ1, · · · , ρi, · · · , ρe−1).

4. Finally, using c � (p − 1)/n where n is the order of 2 mod p,

s(t) = ρ∗ +
∑

0≤i<e

Trn1

⎛
⎜⎜⎜⎝ρi

∑
0 ≤ j < c,

j = i (mod e)

βujt

⎞
⎟⎟⎟⎠ , ∀t.
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Two Examples

� Case e = 2 Let p = 2f + 1 be an odd prime and u be a generator of F ∗
p and

H2 be the set of quadratic residues mod p. Then any quadratic residue sequence
s = {s(t)|t ≥ 0} of period p can be written uniquely as

s = a∗1 + a0bu0 + a1bu1.

It has the defining polynomial g(x) = ρ∗ + ρ0cu0(x) + ρ1cu1(x), where

ρ∗ = a∗ + (a0 + a1)f and

{
ρ0 = a0c−u0(β) + a1c−u1(β)
ρ1 = a0c−u1(β) + a1c−u0(β).

The linear complexity is given as LC(sa∗) = δ(ρ∗) + wH(ρ0, ρ1)f , and, for all t,

s(t) = ρ∗ + Trn1

⎛
⎜⎝ρ0

p−1
2n −1∑
j=0

βu2jt + ρ1

p−1
2n −1∑
j=0

βu2j+1t

⎞
⎟⎠ .

Now, we only need to determine the values of (cu0(β), cu1(β)) � (c0, c1).
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� Case e = 6 Let p = 6f + 1 be an odd prime and u be a generator of F ∗
p

and H6 be the set of sextic residues mod p. Then any sextic residue sequence
s = {s(t)|t ≥ 0} of period p can be written uniquely as

s = a∗1 + a0bu0 + a1bu1 + a2bu2 + a3bu3 + a4bu4 + a5bu5.

It has the defining polynomial

g(x) = ρ∗ + ρ0cu0(x) + ρ1cu1(x) + ρ2cu2(x) + ρ3cu3(x) + ρ4cu4(x) + ρ5cu5(x),

where ρj =
∑

0≤i<e aic−ui+j(β), i.e.,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ∗ = a∗ + (a0 + a1 + a2 + a3 + a4 + a5)f
ρ0 = a0c−u0(β) + a1c−u1(β) + a2c−u2(β) + a3c−u3(β) + a4c−u4(β) + a5c−u5(β)
ρ1 = a0c−u1(β) + a1c−u2(β) + a2c−u3(β) + a3c−u4(β) + a4c−u5(β) + a5c−u0(β)
ρ2 = a0c−u2(β) + a1c−u3(β) + a2c−u4(β) + a3c−u5(β) + a4c−u0(β) + a5c−u1(β)
ρ3 = a0c−u3(β) + a1c−u4(β) + a2c−u5(β) + a3c−u0(β) + a4c−u1(β) + a5c−u2(β)
ρ4 = a0c−u4(β) + a1c−u5(β) + a2c−u0(β) + a3c−u1(β) + a4c−u2(β) + a5c−u3(β)
ρ5 = a0c−u5(β) + a1c−u0(β) + a2c−u1(β) + a3c−u2(β) + a4c−u3(β) + a5c−u4(β)
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The linear complexity is given as

LC(sa∗) = δ(ρ∗) + wH(ρ0, ρ1, ρ2, ρ3, ρ4, ρ5)f,

and, for all t,

s(t) = ρ∗+ Trn1

⎛
⎜⎝ρ0

p−1
6n −1∑
j=0

βu6jt + ρ1

p−1
6n −1∑
j=0

βu6j+1t + ρ2

p−1
6n −1∑
j=0

βu6j+2t

+ ρ3

p−1
6n −1∑
j=0

βu6j+3t + ρ4

p−1
6n −1∑
j=0

βu6j+4t + ρ5

p−1
6n −1∑
j=0

βu6j+5t

⎞
⎟⎠

Now, we only need to determine the values of

(cu0(β), cu1(β), cu2(β), cu3(β), cu4(β), cu5(β)) � (c0, c1, c2, c3, c4, c5).
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e-tuples

Based on Theorem 1, it is enough to focus on the e-tuple of the form

cu(β) = (cu0(β), cu1(β), ..., cue−1(β))

in order to determine the trace representation of the sequence sa∗.

We were able to find some necessary conditions for cu(β), and
thus, able to calculate these values for all the characteristic se-
quences of e-th power cyclic difference sets.
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Applications

We use the following notations.

• p = ef + 1 is a given prime for some e and f ,

• n is the order of 2 mod p,

• c � p−1
n , d � gcd(c, e), c1 � c/d, and e1 � e/d so that

ef = p − 1 = cn, e1f = (p − 1)/d = c1n, and hence, e1|n.
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� e = 2. Legendre sequence picks up all the terms except for t ∈ H2, therefore,

sLegendre � 1 + bu0,

and hence, a∗ = (a∗, a0, a1) = (1, 1, 0) in this case. Now, we may choose β ∈<
α >∗ such that for any given generator u of F ∗

p , we have

(cu0(β), cu(β)) =

⎧⎪⎪⎨
⎪⎪⎩

(1, 0) if p = 1 (mod 8)
(0, 1) if p = 7 (mod 8)

(w2, w) if p = 3 (mod 8)
(w, w2) if p = 5 (mod 8),

where ω ∈ F4 is a primitive 3-rd root of unity. With β and ω chosen as in the
above, (g(x), β) is a defining pair of s, where

g(x) =
p + 1

2
+

{
cu0(x) if p = ±1 (mod 8)
wcu0(x) + w2cu1(x) if p = ±3 (mod 8).

The linear complexity of s is given as

LC(s) = δ(
p + 1

2
) +

{
p−1
2 if p = ±1 (mod 8)

p − 1 if p = ±3 (mod 8).
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� e = 6. Let p = ef + 1 be a prime with e = 6 and f odd. Let d be the
d-parameter corresponding to the chosen (p, 6). Then

1. (Sextic residue sequences in general) There exist a generator u of F ∗
p and

β ∈< α >∗ such that

cu(β) =

⎧⎪⎪⎨
⎪⎪⎩

(0, 1, 1, 0, 1, 0) if d = 6,
(1, 0, w, 1, 0, w2) if d = 3,
(γ, γ3, γ2, γ6, γ4, γ5) if d = 2,
(θ, θ2, θ4, θ8, θ16, θ32) if d = 1,

where

• w is a root of x2 + x + 1,

• γ is a root of x3 + x + 1, and

• θ = ρ or θ = ρ + 1 where ρ is a root of x6 + x5 + 1 (and hence, ρ + 1 is a
root of x6 + x5 + x2 + x + 1).

2. (Hall’s sextic residue sequences) In the case when p = 6f + 1 = 4z2 + 27 for
some integer z, let s be the Hall’s sextic residue sequence of period p which is
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defined as the characteristic sequence of the Hall’s sextic residue different set
D = H6 ∪ u3H6 ∪ uiH6, where uiH6 is the coset containing 3. Then

(a) There exists a generator u of F ∗
p and β ∈< α >∗ such that

cu(β) =

{
(0, 1, 1, 0, 1, 0) if p = 7 (mod 8)
(1, 0, w, 1, 0, w2) if p = 3 (mod 8)

(b) With the choice of u and β as in the above item, (g(x), β) is a defining
pair of s, where

g(x) =

{
cu0(x) if p = 7 (mod 8)
wcu0(x) + w2cu3(x) +

∑
i=1,2,4,5 cui(x) if p = 3 (mod 8)

(c) The trace representation and linear complexity of s is given as follows:

s(t) =
∑

0 ≤ m < c
m ≡ 0 (mod 6)

Trn1
(
βumt

)
=

c/6−1∑
m=0

Trn1

(
βu6mt

)
, LC = (p − 1)/6,

s(t) =
∑

0 ≤ m < c

m ≡ 0 (mod 6)

Trn1
(
ωβumt

)
+

∑
0 ≤ m < c

m ≡ 3 (mod 6)

Trn1
(
ω2βumt

)
+

∑
0 ≤ m < c

m �≡ 0 (mod 3)

Trn1
(
βumt

)
, LC = p − 1.
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Linear complexity of sextic residue sequences of period p = 6f + 1 with f odd
and with a∗ = 0 and a = (a0, a1, ..., a5):

Linear Complexity

wH(a) a = (a0a1...a5) d = 6 d = 3 d = 2 d = 1

1 (100000) 3f + 1 4f + 1 6f + 1 6f + 1

2 (110000) 4f 6f 6f 6f

(101000) 4f 6f 6f 6f

(100100) 2f 2f 6f 6f

3 (111000) 3f + 1 6f + 1 6f + 1 6f + 1

(110100) 5f + 1 2f + 1 6f + 1 6f + 1

(110010) f + 1† 6f + 1† 4f + 1 6f + 1

(101010) 3f + 1‡ 6f + 1‡ 3f + 1 6f + 1

4 (111100) 2f 4f 3f 6f

(111010) 2f 4f 6f 6f

(110010) 4f 4f 6f 6f

5 (111110) 3f + 1 4f + 1 5f + 1 6f + 1

6 (111111) 6f 6f 6f 6f

† corresponds to Hall’s sextic residue sequences, and ‡ to Legendre sequences.
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� e = 4. Let p = ef + 1 with e = 4 and f odd. Then

1. There exists a generator u of F ∗
p with 2 ∈ uH4 and β ∈< α >∗, such that cui(β) =

(θ, θ2, θ4, θ8), where θ = ρ or ρ + 1, and ρ is a root of the polynomial x4 + x3 + 1 and is a

primitive 15-th root of unity, and hence, ρ + 1 is a root of the polynomial
∑

0≤i≤4 xi and is a

primitive 5-th root of unity.

2. In case when p = 4f + 1 = 1 + 4z2 for some integer z (for this case, it is known that H4 is a

(p, (p − 1)/4, (p − 5)/16)-cyclic difference set mod p), let s be the characteristic sequence of

H4. Then s = 1 + bu0, and it has a defining pair (g(x), β), where

g(x) =
∑

0≤i<4

θ22+i
cui(x),

and θ is described as in the item 1 above. As a consequence, LC(s) = p − 1.

3. In case when p = 9 + 4z2 for some integer z (for this case, it is known that H4 ∪ {0} is a

(p, (p + 3)/4, (p + 3)/16)- cyclic difference set mod p), let s be the characteristic sequence of

the difference set H4 ∪{0}. Then s = 1 +b∗ +bu0, and it has a defining pair (g(x), β), where

g(x) = 1 +
∑

0≤i<4

(θ22+i
+ 1)cui(x),

and θ is described as in the item 1 above. As a consequence, LC(s) = p.
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� e = 8. Let p = ef + 1 with e = 8 and f odd, and assume d = 8, where d is the d-parameter

corresponding to (p, e). Then

1. There exist u and β ∈< α >∗ such that cu(β) = (c0, c1, · · · , c7), where

(c0, c1, · · · , c7) = (1, 1, 0, 1, 0, 0, 0, 0), or its complement (0, 0, 1, 0, 1, 1, 1, 1).

2. In the case when p = 1+8z2 = 9+64y2 for some odd integers z and y (for this case, it is known

that H8 is a (p, (p − 1)/8, (p − 7)/64)-cyclic difference set mod p), let s be the characteristic

sequence of H8. Then s = 1 + bu0, and it has a defining pair (g(x), β), where

g(x) =
∑

0≤i<8

c4+icui(x),

the indexes 4 + i is modulo 8, and ci is described as in the item 1 above.

3. In the case when p = 49 + 8z2 = 441 + 64y2 for some odd integers z and y (for this case, it is

known that D = H8 ∪ {0} is a (p, (p + 7)/8, (p + 7)/64)-cyclic difference set mod p), let s be

the characteristic sequence of D = H8 ∪ {0} . Then s = 1 + b∗ + bu0, and it has a defining

pair (g(x), β), where

g(x) = 1 +
∑

0≤i<8

(c4+i + 1)cui(x),

the subscript 4 + i is computed mod 8, and ci is described as in the item 1 above.
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� e = 10. Let p = 31, e = 10, and let s be the characteristic sequence of the
cyclic difference set D = H10 ∪ 11H10 = {i (mod 31) | i = 1, 5, 11, 24, 25, 27}.
Let β be a root of the polynomial x5 + x2 + 1. Then

1. c11(β) = (c0, c1, · · · , c9) , where c2j = β−7·24j
, c2j+1 = β−24j

, 0 ≤ j < 5.

2. s = 1 + b1 + b11.

3. Let
g(x) = 1 +

∑
0≤j<5

(
β11·24j

c112j(x) + β18·24j
c112j+1(x)

)
.

Then (g(x), β) is a defining pair of s.
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Concluding remarks

• Binary sequences (of period p) of all the cyclic difference sets D which are some
union of cosets of e-th powers in F ∗

p for e ≤ 12 are studied in terms of

– their defining pairs,

– trace representations,

– linear complexities.

• In particular, linear complexities of all the e-th residue sequences are determined
whenever d = gcd(e, (p − 1)/n) = 1, where n is the order of 2 mod p.

• How to evaluate the e-tuple (cu0(β), ..., cue−1(β)) for some u and β whenever
a prime p = ef + 1 is given ?

• Open Problem: Which one among the two values ρ and ρ + 1 the element
θ in the cases e = 4 and e = 6 takes has not been determined yet, and we
do not know whether both values will be taken when p changes; and the same
problem for the tuple (c0, c1, · · · , c7) in the case e = 8.
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