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I. Binary Jacobi Sequences

� Definition Let p, q be two distinct odd primes. We define a binary sequence
Jp,q = {Jp,q(t)|t ≥ 0} of period pq as

Jp,q(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 t ≡ 0 (mod pq)
1 t ≡ 0 (mod p), t �≡ 0 (mod q)
0 t �≡ 0 (mod p), t ≡ 0 (mod q)

σ
(
( t
p)(

t
q)

)
(t, pq) = 1,

(1)

where σ(1) = 0 and σ(−1) = 1, and
(

t
p

)
is the legendre symbol of the integer t

mod p, taking the value +1 or −1 according to whether t is a quadratic residue
mod p or not. It is clear that

σ

(
(
t

p
)(

t

q
)

)
= σ

(
t

p

)
+ σ

(
t

q

)
.
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� Example Jacobi sequence J3,7 = {J3,7(t)|t ≥ 0} of period 21 is defined as

J3,7(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 t ≡ 0 (mod 21)

1 t ≡ 0 (mod 3), t �≡ 0 (mod 7)

0 t �≡ 0 (mod 3), t ≡ 0 (mod 7)

σ
(
( t
3)(

t
7)

)
(t, 21) = 1.

This can be viewed as follows:

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

σ
(
( t
3)

)
0 1 0 1 0 1 0 1 0 1 0 1 0 1

σ
(
( t
7)

)
0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1

σ
(
( t
3)(

t
7)

)
0 1 0 0 1 1 1 1 0 0 1 0

J3,7(t) 0 0 1 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 0
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� Relation with Cyclic Hadamard Difference Sets

When q = p + 2 so that p and p + 2 are both prime (twin prime), the binary jacobi
sequence of period p(p + 2) is the characteristic sequence of a cyclic Hadamard
difference set with parameter v = p(p + 2), k = (v − 1)/2, and λ = (v − 3)/4,
and has the ideal autocorrelation:

φ(τ )
�
=

∑
0≤t<p(p+2)

(−1)Jp,p+2(t)+Jp,p+2(t+τ)

=

{
p(p + 2), τ ≡ 0 (mod p(p + 2))
−1, otherwise
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Preparation

• Let s = {s(t)|t ≥ 0} be a binary sequence of period N that divides 2n − 1 for
some n.
=⇒ There exists a primitive N -th root γ of unity and a polynomial g(x) =∑

0≤i<N ρ(i)xi (mod xN − 1) such that

s(t) = g(γt) t = 0, 1, 2, ...

• We call the pair (g(x), γ) a defining pair of the sequence s.

• We will consider only the case where N is either an odd prime or a product of
two distinct odd primes.

• The relation between the sequence s = {s(t)|t ≥ 0} and its spectral counterpart
{ρ(i)|i ≥ 0} is given as

s(t) =
∑

0≤i<N

ρ(i)γit ⇐⇒ ρ(i) =
∑

0≤t<N

s(t)γ−it.
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Quadratic Residue Cyclic Difference Sets mod p

• Let p be an odd prime, and Fp be the finite field with p elements. We denote
by F ∗

p the cyclic multiplicative group Fp\{0}.
• F ∗

p is a disjoint union of A0 � {x2|x ∈ F ∗
p } and A1 � F ∗

p \A0 of equal size
(p − 1)/2.

• A0 is a (quadratic residue) cyclic difference set with parameters (v = p, k =
(p − 1)/2, λ = (p − 3)/4).

• We let A0(x) =
∑

t∈A0
xt (mod xp−1), and A1(x) =

∑
t∈A1

xt (mod xp−1),
which are called the generating polynomials of A0 and A1, respectively.

• Let A(x) = p−1
2 + a0A0(x) + a1A1(x) (mod xp − 1), where

(a0, a1) =

{
(1, 0) if p ≡ ±1 (mod 8)
(ω, ω2) if p ≡ ±3 (mod 8),

and ω ∈ F4\F2 is a chosen primitive 3-rd root of unity.
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• It is known [Dai-Gong-Song 2002] that one can always find a primitive p-th root
α of unity such that

A0(α) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 p ≡ +1 (mod 8)

0 p ≡ −1 (mod 8)

ω2 p ≡ +3 (mod 8)

ω p ≡ −3 (mod 8).

(2)

• It is also known that if a primitive p-th root α of unity does not satisfies
the above condition, then αu must satisfy the above condition, where u is an
arbitrary generator of Fp.

• For this choice of α, it is also known that A1(α) = 0, 1, ω, ω2 for p ≡
+1,−1, +3,−3 (mod 8), respectively.

• With A(x) and α defined above, we have the following basic lemma.
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Lemma 1 (Basic Lemma (Dai-Gong-Song 2002)) Let p be an odd prime,
α be chosen by above, and A(x) be as given above. Let bp = {bp(t)|t ≥ 0} be
the sequence of period p defined as

bp(t) =

{
1 t ∈ A0,
0 t ∈ Fp\A0.

Then, (A(x), α) is a defining pair of the sequence bp.

• For the sake of convenience, for any other odd prime q, we let

B(x) =
q − 1

2
+ b0B0(x) + b1B1(x) (mod xq − 1),

where Bi(x) is the generating polynomial of the set Bi for i = 0, 1, B0 is the
set of quadratic residues mod q, B1 is the set of quadratic non-residues mod q,
and

(b0, b1) =

{
(1, 0) if q ≡ ±1 (mod 8)
(ω, ω2) if q ≡ ±3 (mod 8).
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• Let bq = {bq(t)|t ≥ 0} be the sequence of period q defined as

bq(t) =

{
1 t ∈ B0,
0 t ∈ Fp\B0.

• Then, from Lemma 1, one can find a primitive q-th root β of unity such that
(B(x), β) is a defining pair of bq. It is the choice that gives

B0(α) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 p ≡ +1 (mod 8)

0 p ≡ −1 (mod 8)

ω2 p ≡ +3 (mod 8)

ω p ≡ −3 (mod 8).

(3)
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Main Result

• In the remaining of this paper, we keep the notations Ai(x), Bi(x), A(x), B(x),
and the choice ω, α and β.

• Also in the remaining, we let ep and eq be integers mod pq such that

ep =

{
1 (mod p)
0 (mod q),

and eq =

{
1 (mod q)
0 (mod p).

Note that ep and eq are unique mod pq due to the Chinese Remainder Theorem.

• We let Trn1(x) =
∑

0≤i<n x2i
be the trace of x from F2n to F2.

• Modulo 8, the odd primes p and q have 4 difference values, and there are 16
different cases for the pair (p, q). In the following, we group 8 of them together,
and distinguish only two cases as follows:

CASE 1: (p, q) ∈ {(+1, +1), (+1,−1), (−1, +1), (−1,−1),

(+3, +3), (+3,−3), (−3, +3), (−3,−3)}; and

CASE 2: (p, q) ∈ {(+1, +3), (+1,−3), (−1, +3), (−1,−3),

(+3, +1), (+3,−1), (−3, +1), (−3,−1)}.
10
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Theorem 1 (Main Theorem) For any two distinct odd primes p and q, there
exist α, β and ω which satisfy the conditions (2) and (3), respectively, where α is
a p-th primitive root of unity, β is a q-th primitive root of unity and ω is a 3-th
primitive root of unity. And recall the choice of all the notations discussed so far.
Define a polynomial J(x) (mod xpq − 1) as follows:

J(x) =
q − 1

2

∑
1≤i<p

xepi +
p + 1

2

∑
1≤j<q

xeqj

+

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
i=0,1

Ai(x
ep)Bi(x

eq) for CASE 1, and

ω
∑
i=0,1

Ai(x
ep)Bi(x

eq) + ω2
∑
i=0,1

Ai(x
ep)Bi+1(x

eq) for CASE 2,

where B2(x) = B0(x). Then,

(i) the Jacobi sequence Jp,q = {Jp,q(t)|t ≥ 0} has a defining pair (J(x), αβ), and
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(ii) it has a trace representation as follows:

Jp,q(t) =
q − 1

2

∑
0≤i<cp

Trm1 (αuit) +
p + 1

2

∑
0≤j<cq

Trn1(β
vjt)

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
0 ≤ i < cp

0 ≤ j < cqd

i ≡ j (mod 2)

TrM1

(
(αui

βvj
)t
)

for CASE 1, and

∑
0 ≤ i < cp

0 ≤ j < cqd
i ≡ j (mod 2)

TrM1

(
ω(αui

βvj
)t
)

+
∑

0 ≤ i < cp

0 ≤ j < cqd
i �≡ j (mod 2)

TrM1

(
ω2(αui

βvj
)t
)

for CASE 2,

where m and n are orders of 2 mod p and q, respectively, cp = p−1
m , cq = q−1

n ,
d = (m, n) is the gcd of m and n, M = mn/d, and finally, u and v are any
given generators of F ∗

p and F ∗
q , respectively.
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Remark 1 The linear complexity LS(Jp,q) of Jp,q is given by:

LS(Jp,q) = (p − 1)ε(
q − 1

2
) + (q − 1)ε(

p + 1

2
)

+

{
(p − 1)(q − 1)/2 CASE 1,

(p − 1)(q − 1) CASE 2,

where ε(a) = 1, 0 for a ≡ 1, 0 (mod 2), respectively.

Now, we begin the proof of the main theorem.

� Definition Let T be an odd integer. A δ-sequence of period T , which will be
denoted by δT = {δT (t)|t ≥ 0}, is defined as

δT (t) =

{
1 t ≡ 0 (mod T )

0 otherwise.

We also define
ΔT (x) =

∑
0≤i<T

xi.

It is clear that (ΔT (x), γ) is a defining pair of the δ-sequence δT , where γ is any
given T -th primitive root of unity.

13



ISIT ’03

� Definition Given a sequence s = {s(t)|t ≥ 0}, the λ-jump sequence of s,
which will be denoted by s[λ] = {s[λ](t)|t ≥ 0}, is defined as

s[λ](t) =

{
s(t) t ≡ 0 (mod λ)

0 otherwise.

It is clear that the λ-jump sequence of s is obtained by multiplying s by δλ

term-by-term. That is,
s[λ](t) = s(t)δλ(t), ∀t. (4)
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Lemma 2
Jp,q = bp + bq + b[q]

p + b[p]
q + δp + δpq.

Proof: Obvious. See the following:

sequences t ≡ 0(pq)
t ≡ 0(p)

t �≡ 0(q)

t �≡ 0(p)

t ≡ 0(q)
(t, pq) = 1

bp 0 0 σ
(
( t
p)

)
σ

(
( t
p)

)
bq 0 σ

(
( t
q)

)
0 σ

(
( t
q)

)
b

[q]
p 0 0 σ

(
( t
p)

)
0

b
[p]
q 0 σ

(
( t
q)

)
0 0

δp 1 1 0 0

δpq 1 0 0 0

SUM = Jp,q 0 1 0 σ
(
( t
p)(

t
q)

)
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Lemma 3 Defining pairs of six component sequences of Jp,q in Lemma 2 are given
as follows:

sequences defining pair

bp (A(xep), αβ)

bq (B(xeq), αβ)

b
[q]
p (A(xep)Δq(x

eq), αβ)

b
[p]
q (B(xeq)Δp(x

ep), αβ)

δp (Δp(x
ep), αβ)

δpq (Δpq(x), αβ)

Proof: Obvious.
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Lemma 4 If f (x) ≡ g(x) (mod xp − 1) then

f (xep) ≡ g(xep) (mod xpq − 1).

Lemma 5 The three identities in the following are true:

(i) Δpq(x) = 1 +
∑

1≤i<p

xepi +
∑

1≤j<q

xeqj

+
∑

1 ≤ i < p

1 ≤ j < q

xepi+eqj (mod xpq − 1),

(ii)
∑

1≤i<p

xepi = A0(x
ep) + A1(x

ep) (mod xpq − 1),

(iii)
∑

1 ≤ i < p
1 ≤ j < q

xeqj+epi =
∑

i = 0, 1
j = 0, 1

Ai(x
ep)Bj(x

eq) (mod xpq − 1).
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Lemma 6 Let

Jp,q(x) =
q − 1

2

∑
1≤i<p

xepi +
p + 1

2

∑
1≤j<q

xeqj

+
∑

i = 0, 1
j = 0, 1

(ai + bj + 1)Ai(x
ep)Bj(x

eq) (mod xpq − 1),

where ai, bj, Ai(x), Bj(x) are defined for bp and bq in the previous section. Then,
(Jp,q(x), αβ) is a defining pair of Jp,q.

Lemma 7 A complete set S of representatives of conjugacy classes of the (p −
1)(q − 1) primitive pq-th roots of unity over F2 is given as:

S = { αui
βvj | 0 ≤ i < cp, 0 ≤ j < cqd }.

Finally, using the above and more, we were able to prove the main theorem.
Please see the full-version paper (currently on review at some Journal).
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Concluding Remarks

• The characteristic sequences of (v, (v − 1)/2, (v − 3)/4)-cyclic Hadamard dif-
ference sets are known to have the ideal two-level autocorrelation function, and
they have been studied in the community of communications engineering and
cryptography.

• Every known cyclic Hadamard difference set has the value v which is either (i)
a prime congruent to 3 (mod 4), (ii) a product of twin primes, or (iii) of the
form 2m − 1 for some integer m.

• Family (iii) have been intensively studied for long time and their linear complexity
and trace representations are now well understood except possibly for the newly
discovered hyperoval constructions.

• Recently, in a series of publications, trace representations for the family (i) have
been completed.

• This paper determined a trace representation for the family (ii).
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