Minimum Distance Bounds for Irregular QC-LDPC Codes and their Applications

Min-Ho Shin, Joon-Sung Kim, Hong-Yeop Song

July 1, ISIT 2004, Chicago

Coding & Information Theory Laboratory Dept. of Electrical and Electronic Engineering Yonsei University Seoul, Korea

Contents

- Introduction
- Tanner's Minimum Distance Bounds
- Quasi-Cyclic LDPC Codes
- Minimum Distance Bounds for QC-LDPC Codes
 - Bit-Oriented Bound
 - Parity-Oriented Bound
- Code Construction Examples
- Simulation Results
- Conclusions

Tanner's minimum distance bounds

- Minimum distance bound for regular codes
- Using these bounds, we can find good regular LDPC codes which are good in terms of the distance property.
- Applicable only to regular LDPC codes

Quasi-Cyclic LDPC codes

- Constructed from circulant submatrices
- The encoding complexity is almost as low as cyclic codes.
- => We will derive minimum distance bound for irregular QC-LDPC codes using a similar technique to Tanner's bound.

Tanner's minimum distance bounds

- Minimum distance bound for a regular code with an $m \times n$ parity check matrix **H**
- Let γ be the fixed column weight and ρ be the fixed row weight of **H**.
- Let μ_1, μ_2 be the largest and the second largest eigenvalues of \mathbf{HH}^T .
- bit-oriented bound

$$d \ge \frac{n(2\gamma - \mu_2)}{\mu_1 - \mu_2}$$

• parity-oriented bound

$$d \geq \frac{2n(2\gamma + \rho - 2 - \mu_2)}{\rho(\mu_1 - \mu_2)}$$

• Tanner set up a heuristic rule that a code with a smaller ratio of second to first eigenvalues will have a good distance property.

Tanner's Minimum Distance Bounds

Example

- A rate 4/9 (9,2,3)-regular LDPC code with $\mu_1 = 6$ and $\mu_2 = 3$
- The bit-oriented bound gives $d \ge 3$
- The parity-oriented bound gives $d \ge 4$
- The actual minimum distance is d = 4
- In this case, the parity-oriented bound gives the true minimum distance.

QC-LDPC Codes

- A block code is said to be quasi-cyclic if a cyclic shift of any codeword by *p* places is still a codeword
- We consider QC codes with following structure $\mathbf{H} = [\mathbf{H}_1, \mathbf{H}_2, \cdots, \mathbf{H}_p]$

where $\mathbf{H}_1, \mathbf{H}_2, \dots, \mathbf{H}_p$ are $m \times m$ circulant matrices

• Each circulant matrix \mathbf{H}_i is described by the associated polynomial

$$h_{i}(x) = \sum_{j=0}^{m-1} (\mathbf{H}_{i})_{0j} x^{j}$$

corresponding to the $\mathbf{H}_{i} = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix} \Leftrightarrow h_{i}(x) = 1 + x^{2} + x^{3}$

Theorem 1. Bit-oriented bound

• Let $\mu_1 > \mu_2 > \cdots > \mu_s$ be the ordered distinct eigenvalues of real valued matrix $\mathbf{H}^T \mathbf{H}$, where $\mathbf{H} = [\mathbf{H}_1, \mathbf{H}_2, \cdots, \mathbf{H}_p]$ and \mathbf{H}_i is an $m \times m$ circulant matrices which has constant row weight $\omega_i, 1 \le i \le p$, with $\omega_1 \le \cdots \le \omega_p$

Then the minimum distance of the code satisfies

$$d \ge \frac{(2\omega_1 - \mu_2)\sum_{i=1}^p \omega_i^2 \cdot m}{(\sum_{i=1}^p \omega_i^2 - \mu_2) \cdot \omega_p^2}$$

Proof

• The first eigenvector of $\mathbf{H}^T \mathbf{H}$

$$\mathbf{e}_{1} = (\omega_{1}, \cdots, \omega_{1}, \omega_{2}, \cdots, \omega_{2}, \cdots, \omega_{p}, \cdots, \omega_{p})^{T} / \sqrt{m \cdot \sum_{i=1}^{p} \omega_{i}^{2}}$$

with corresponding eigenvalue $\mu_1 = \sum_{i=1}^p \omega_i^2$

• Let **c** be a minimum-weight codeword of weight *d*.

$$\mathbf{c}^T \mathbf{c} = \left\| \mathbf{c} \right\|^2 = d \tag{3}$$

Let d_i be the number of nonzeros of c in each m-portion corresponding to H_i, and let c_i be the projection of c onto the *i*th eigenspace.

$$\|\mathbf{c}_{1}\|^{2} = \|\mathbf{c} \cdot \mathbf{e}_{1}\| = \frac{\left(\sum_{i=1}^{p} d_{i}\omega_{i}\right)^{2}}{m \cdot \sum_{i=1}^{p} \omega_{i}^{2}} \le \frac{d^{2}\omega_{p}^{2}}{m \cdot \sum_{i=1}^{p} \omega_{i}^{2}}$$
(4)

• Let x_i be the weight on the *i*th parity defined by **Hc**. Then

$$\|\mathbf{H}\mathbf{c}\|^{2} = \sum_{i=1}^{m} x_{i}^{2} \ge 2\sum_{i=1}^{m} x_{i} = 2\sum_{i=1}^{m} \omega_{i} d_{i} \ge 2\omega_{1} d$$
(5)

• Using the eigenspace representation

$$\left\|\mathbf{H}\mathbf{c}\right\|^{2} = \sum_{i=1}^{s} \mu_{i} \left\|\mathbf{c}_{i}\right\|^{2} \le (\mu_{1} - \mu_{2}) \left\|\mathbf{c}_{1}\right\|^{2} + \mu_{2} \left\|\mathbf{c}\right\|^{2}$$
(6)

• Finally substituting (3),(4),(5) into (6) gives

$$2\omega_1 d \le (\mu_1 - \mu_2) \|\mathbf{c}_1\|^2 + \mu_2 \|\mathbf{c}\|^2 \le (\sum_{i=1}^p \omega_i^2 - \mu_2) \frac{d^2 \omega_p^2}{m \cdot \sum_{i=1}^p \omega_i^2} + \mu_2 d$$

$$\implies d \ge \frac{(2\omega_1 - \mu_2)\sum_{i=1}^p \omega_i^2 \cdot m}{(\sum_{i=1}^p \omega_i^2 - \mu_2) \cdot \omega_p^2}$$

Theorem 2. Parity-oriented bound

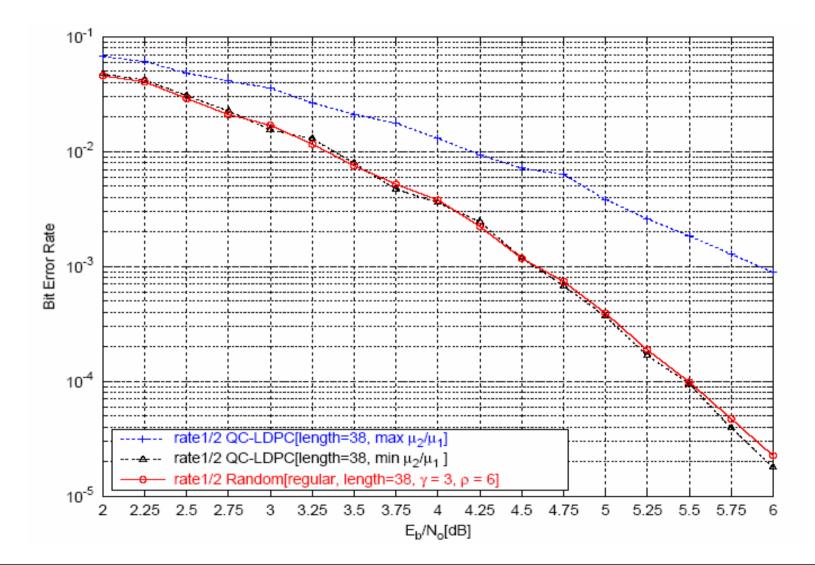
Let $\mu_1 > \mu_2 > \cdots > \mu_s$ be the ordered distinct eigenvalues of real valued matrix $\mathbf{H}\mathbf{H}^T$, where $\mathbf{H} = [\mathbf{H}_1, \mathbf{H}_2, \cdots, \mathbf{H}_p]$ and \mathbf{H}_i is a $m \times m$ circulant matrices which has weight $\omega_i, 1 \le i \le p$, with $\omega_1 \le \cdots \le \omega_p$

Then the minimum distance of the code satisfies

$$d \ge \frac{2m(2\omega_{1} + \sum_{i=1}^{p} \omega_{i} - 2 - \mu_{2})}{\omega_{p}(\sum_{i=1}^{p} \omega_{i}^{2} - \mu_{2})}$$

- A rate 1/2 irregular QC-LDPC code of length 38
 - Let $\mathbf{H} = \begin{bmatrix} \mathbf{H}_1 & \mathbf{H}_2 \end{bmatrix}$ and m = 19
 - The best case
 - ✓ $h_1(x) = 1 + x + x^8$, $h_2(x) = 1 + x^2 + x^6 + x^{16}$
 - ✓ Eigenvalues $\mu_1 = 25$, $\mu_2 = 6$ ($\mu_2/\mu_1 = 0.24$)
 - ✓ The bit and the parity-oriented bound gives $d \ge 0$ and $d \ge 2.5$
 - ✓ The actual minimum distance is d = 7
 - The worst case
 - ✓ $h_1(x) = 1 + x^5 + x^{12}, h_2(x) = 1 + x^2 + x^7 + x^{14}$
 - ✓ Eigenvalues $\mu_1 = 25$, $\mu_2 = 22.29$ ($\mu_2/\mu_1 = 0.89$)
 - ✓ The actual minimum distance is d = 4
 - We can increase the minimum distance of a code by minimizing the second largest eigenvalue.

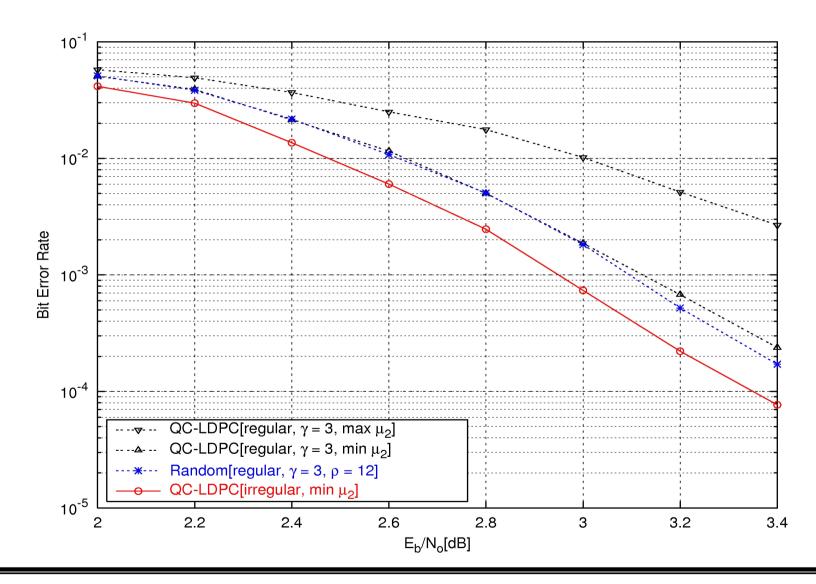
Simulation Results



Coding and Information Theory Lab.

Code Description			Eigenvalue ratio	# of 6-cycle
Random	[868,3,12] Random LDPC code		$\mu_2/\mu_1 = 0.5926$	1,792
Regular QC-LDPC	$h_1(x) = x^{78} + x^{121} + x^{137}$ $h_3(x) = 1 + x^{11} + x^{86}$	$h_2(x) = 1 + x^8 + x^{107}$ $h_4(x) = x^{29} + x^{64} + x^{198}$	$\mu_2/\mu_1 = 0.9543$ (maximum)	6,727
	$h_1(x) = 1 + x^{121} + x^{137}$ $h_3(x) = 1 + x^{11} + x^{100}$	$h_2(x) = x^8 + x^{79} + x^{85}$ $h_4(x) = x^{29} + x^{165} + x^{207}$	$\mu_2/\mu_1 = 0.5469$ (minimum)	1,085
Irregular QC-LDPC	$h_1(x) = x^{67} + x^{88}$ $h_3(x) = 1 + x^{11} + x^{144}$	$h_2(x) = x^{18} + x^{78} + x^{121}$ $h_4(x) = x^{B_5}$	$\mu_2/\mu_1 = 0.5764$ (maximum)	28,220
	$h_1(x) = x + x^{149}$ $h_3(x) = 1 + x^{144} + x^{190}$	$h_2(x) = 1 + x^{18} + x^{137}$ $h_4(x) = x^{B_5}$	$\mu_2/\mu_1 = 0.3830$ (minimum)	23,002

Simulation Results



Conclusions

Summary

Minimum distance bounds for irregular QC-LDPC codes using a similar technique to Tanner's bound

Further work

• Derive tighter minimum distance bound