One-Error Linear Complexity over F_p of S-LCE Sequences

SETA'04 (Oct. $24 \sim 28$)

Yu-Chang Eun and Hong-Yeop Song

Yonsei University

Seoul, Korea

Yonsei University Electrical and Electronic Eng.

Outline

- Introduction
 - Sidelnikov-Lempel-Cohn-Eastman sequences
 - *k*-error linear complexity
- One-error linear complexity over F_p of a S-LCE sequence
 - Linear complexity computation by Fourier transform
 - Special case (Upper bound on one-error L.C.)
 - Proof of the theorem
- Conjecture

Introduction

◊ SideInikov-Lempel-Cohn-Eastman sequences

• Definition of a S-LCE sequence

$$s(t) = \begin{cases} 1 & \text{if } \alpha^t + 1 \in QNR \\ 0 & \text{otherwise} \end{cases}$$
(1)

where $QNR = \{\alpha^{2t+1} | t = 0, 1, ..., \frac{p^m - 1}{2} - 1\}$ over F_{p^m}

• Let $\chi(x)$ denote the quadratic character of $x \in F_{p^m}$ defined by

$$\chi(x) = \begin{cases} +1, & \text{if } x \text{ is a quadratic residue} \\ 0, & \text{if } x = 0 \\ -1, & \text{if } x \text{ is a quadratic nonresidue} \end{cases}$$

Then [Helleseth and Yang '01],

$$s(t) = \frac{1}{2} \left(1 - I(\alpha^t + 1) - \chi(\alpha^t + 1) \right)$$
(2)

where I(x) = 1 if x = 0 and I(x) = 0 otherwise.

• [Helleseth, Kim, and No '03]

The linear complexity over F_p (not F_2) of a S-LCE sequence of length $p^m - 1$ and its trace representation were derived when p = 3, 5, and 7.

\diamond *k*-error linear complexity

- Denote the linear complexity of a sequence S by L(S).
- Let $Z = \{z(t)\}$ belong to the set of all the sequences withe the same length as S.
- The k-error linear complexity of S

$$L_k(S) = \min_{0 \le \mathsf{WH}(Z) \le k} L(S + Z).$$
(3)

One-error linear complexity over F_p **of a S-LCE sequence**

- Assume $z^{(\tau,\lambda)}(t) = \frac{\lambda}{2}I(\alpha^{t-\tau}+1)$ for $0 \le \tau < p^m 1$ and $\lambda \in F_p$.
- Then the sequence $Z^{(\tau,\lambda)} = \{z^{(\tau,\lambda)}(t)\}$ is able to represent all the sequences over F_p such that $WH(Z^{(\tau,\lambda)}) \leq 1$.
- The one-error allowed S-LCE sequence $S_Z^{(\tau,\lambda)} = \{s_z^{(\tau,\lambda)}(t)\}$

$$s_{z}^{(\tau,\lambda)}(t) \triangleq s(t) + z^{(\tau,\lambda)}(t)$$

$$= \frac{1}{2} \left(1 - I(\alpha^{t}+1) - \chi(\alpha^{t}+1) \right) + \frac{\lambda}{2} I(\alpha^{t-\tau}+1).$$
(4)

• The one-error linear complexity of a S-LCE sequence S

$$L_1(S) = \min_{0 \le \tau \le p^m - 2, \ \lambda \in F_p} L(S_Z^{(\tau,\lambda)}).$$
(5)

Linear complexity computation (Blahut's theorem)

• Fourier transform for a p-ary sequence $Y = \{y(t)\}$ of period $n = p^m - 1$

$$A_{i} = \frac{1}{n} \sum_{t=0}^{n-1} y(t) \alpha^{-it} \in F_{p^{m}}$$
(6)

where α is a primitive element of F_{p^m}

• The linear complexity of Y

$$L(Y) = |\{ i \mid A_i \neq 0, \ 0 \le i \le n-1 \}|$$

= $p^m - 1 - |\{ i \mid A_i = 0, \ 0 \le i \le n-1 \}|.$ (7)

Lemma 1 [Helleseth, Kim, and No '03] Let the *p*-adic expansion of *i* be given as

$$i = \sum_{n=0}^{m-1} i_a p^a$$

where $0 \le i \le p - 1$. Then, the Fourier coefficient $A_{-i} (\in F_{p^m})$ of the S-LCE sequence defined in (2) is given as

$$A_{-i} = \frac{1}{p-1} \left(-(-1)^{i} - (-1)^{i-\frac{p^{m}-1}{2}} \prod_{a=0}^{m-1} \binom{i_{a}}{\frac{p-1}{2}} \right).$$
(8)

Lemma 2 The Fourier coefficient $A_{-i}(\tau, \lambda)$ of the one-error allowed S-LCE sequence $S_Z^{(\tau,\lambda)}$ defined in (4) is given as

$$A_{-i}(\tau,\lambda) = \frac{1}{p-1} \left(-(-1)^{i} + \lambda(-\alpha^{\tau})^{i} - (-1)^{i-\frac{p^{m}-1}{2}} \prod_{a=0}^{m-1} {\binom{i_{a}}{\frac{p-1}{2}}} \right) \in F_{p^{m}}$$
(9)

where i_a is defined in Lemma 1.

◊ Special case (Upper bound on one-error L.C.)

• When $\alpha^{\tau} = 1$ (or $\tau = 0$) and $\lambda = 1$ in the one-error allowed S-LCE sequence $s_z^{(\tau,\lambda)}(t) = \frac{1}{2}(1 - I(\alpha^t + 1) - \chi(\alpha^t + 1)) + \frac{\lambda}{2}I(\alpha^{t-\tau} + 1)$ $s_z^{(0,1)}(t) = \frac{1}{2}(1 - \chi(\alpha^t + 1)).$

• Then,

$$L\left(S_{Z}^{(0,1)}\right) = \left|\{ i \mid A_{-i}(0,1) \neq 0, \ 0 \le i \le p^{m} - 2 \}\right|$$

= $\left|I\right| = \left(\frac{p+1}{2}\right)^{m} - 1.$ (10)

where

$$I = \left\{ \begin{array}{l} i \mid \prod_{a=0}^{m-1} {i_a \choose \frac{p-1}{2}} \neq 0, \ 0 \le i \le p^m - 2 \right\} \\ = \left\{ \begin{array}{l} i \mid i_a \in \left\{ \frac{p-1}{2}, \frac{p+1}{2}, \cdots, p-1 \right\}, \ 0 \le i \le p^m - 2 \right\} \end{array}$$
(11)

• Without calculating $A_{-i}(0,1)$,

$$s_{z}^{(0,1)}(t) = \frac{1}{2} \left(1 - \chi(\alpha^{t} + 1) \right) = \frac{1}{2} \left(1 - (\alpha^{t} + 1)^{\frac{p^{m}-1}{2}} \right)$$

$$= \frac{1}{2} \left(1 - (\alpha^{t} + 1)^{\sum_{k=0}^{m-1} \frac{p-1}{2}p^{k}} \right)$$

$$= \frac{1}{2} \left(1 - \prod_{k=0}^{m-1} (\alpha^{t} + 1)^{\frac{p-1}{2}p^{k}} \right)$$

$$= \frac{1}{2} \left(1 - \prod_{k=0}^{m-1} (a_{0} + a_{1}\alpha^{t} + \dots + a_{\frac{p-1}{2}}\alpha^{\frac{p-1}{2}t})^{p^{k}} \right).$$

(12)

where $a_i = {\binom{p-1}{2}}$. Since the characteristic is p and $a_i \not\equiv 0 \pmod{p}$ we obtain the same linear complexity as (10) by just counting all the sum-terms.

• This indicates

$$L_1(S) \le \left(\frac{p+1}{2}\right)^m - 1. \tag{13}$$

Theorem 1 (main) Let S be an S-LCE sequence of period $p^m - 1$, where p is an odd prime and m is a positive integer. Assume that m is even, or p = 3 and m > 1. Then

$$L_1(S) = \left(\frac{p+1}{2}\right)^m - 1.$$
 (14)

m	L_0	L_1	n	$\frac{L_0}{n}(\%)$	$\frac{L_1}{n}(\%)$				
2	7	3	8	87.5	37.5				
4	73	15	80	91.3	18.8				
6	697	63	728	95.7	8.7				
8	6433	255	6560	98.1	3.9				

Table 1: Comparison of L_0 and L_1 when p = 3

-	Table 2: Comparison of L_0 and L_1 when $p = 5$								
	m	L_0	L_1	n	$\frac{L_0}{n}$ (%)	$\frac{L_1}{n}(\%)$			
	2	21	8	24	87.5	33.3			
	4	608	80	624	97.4	12.8			
	6	15501	728	15624	99.2	4.7			
	8	389248	6560	390624	99.6	1.7			

Ore Proof of the theorem

• We will distinguish two cases for

$$\begin{aligned} A_{-i}(\tau,\lambda) &= \frac{1}{p-1} \bigg(-(-1)^i \\ &+ \lambda (-\alpha^{\tau})^i - (-1)^{i - \frac{p^m - 1}{2}} \prod_{a=0}^{m-1} \binom{i_a}{\frac{p-1}{2}} \bigg) \bigg) \in F_{p^m} \end{aligned}$$

as follows:

Case I . $\alpha^{\tau} \notin F_p$ and $\lambda \neq 0$ Case II. $\alpha^{\tau} \in F_p$ \diamond Case I. $\alpha^{\tau} \notin F_p$ and $\lambda \neq 0$

• Since $A_{-i}(\tau, \lambda) \neq 0$ if $\alpha^{\tau i} \notin F_p$,

$$L(S_Z^{(\tau,\lambda)}) \ge \left| \left\{ i \mid \alpha^{\tau i} \notin F_p, \ 0 \le i \le p^m - 2 \right\} \right| \triangleq N.$$
(15)

• Since

$$N = (p^m - 1)\left(1 - \frac{1}{d}\right) \ge \frac{p^m - 1}{2} \ge \left(\frac{p + 1}{2}\right)^m - 1$$
(16)

where *d* is the least positive integer such that $\alpha^{\tau d} \in F_p$,

• Therefore,

$$L(S_Z^{(\tau,\lambda)}) \ge \left(\frac{p+1}{2}\right)^m - 1.$$
(17)

\diamond Case II. $\alpha^{\tau} \in F_p$

• When $C = \{ i \mid A_{-i}(\tau, \lambda) = 0, 0 \le i \le n - 1 \}$,

$$L(S_Z^{(\tau,\lambda)}) = n - |C|.$$
 (18)

- Let $\beta = \alpha^{\tau} (\in F_p)$, $C = \left\{ i \mid \prod_{a=0}^{m-1} {i_a \choose \frac{p-1}{2}} = (-1)^{\frac{p^m-1}{2}} (1-\lambda\beta^i), \ 0 \le i \le n-1 \right\}.$ (19)
- Let *e* denote the order of β thus e|(p-1). Then we can consider two subcases in terms of β as follows.
- \diamond When $\beta = 1$ (or $\tau \equiv 0 \pmod{e}$)
 - $\lambda = 1$ yields the special case as

$$L\left(S_Z^{(0,1)}\right) = |I| = \left(\frac{p+1}{2}\right)^m - 1.$$

• Since
$$1 - \lambda \beta^i \neq 0$$
 for any $\lambda \in F_p \setminus \{1\}$,
 $|C| \leq |I^c| = n - |I| = n + 1 - \left(\frac{p+1}{2}\right)^m$. (20)

• Thus,

$$L(S_Z^{(\tau,\lambda)}) = n - |C|$$

$$\geq \left(\frac{p+1}{2}\right)^m - 1.$$
(21)

 \diamond When $\beta \neq 1$ (or $\tau \not\equiv 0 \pmod{e}$)

• If $\lambda = 0$, $S_Z^{(\tau,0)}$ = the S-LCE sequence S for any τ . Then,

 $|C| \le |I^c|$ as (20)

• If $\lambda \neq 0$,

$$|C| \le \left| \left\{ i \mid \beta^{i} = \lambda^{-1} \right\} \cap I^{c} \right| + \left| \left\{ i \mid \beta^{i} \neq \lambda^{-1} \right\} \cap I \right|.$$

$$(22)$$

• Let u denote some integer such that $\lambda^{-1} = \beta^u$ and $0 \le u \le e$. If u does not exist,

$$|C| \le |I| \le |I^c| \,. \tag{23}$$

• Otherwise, if such *u* exists (22) becomes

$$|C| \leq \left| \left\{ \begin{array}{l} i \mid \sum_{a=0}^{m-1} i_a \equiv u \pmod{e} \right\} \cap I^c \right| + \left| \left\{ \begin{array}{l} i \mid \sum_{a=0}^{m-1} i_a \not\equiv u \pmod{e} \right\} \cap I \right| \end{array}$$
(24)

since $i = \sum_{a=0}^{m-1} i_a p^a \equiv \sum_{a=0}^{m-1} i_a \pmod{e}$.

• Now the RHS of (24) can be upper bounded by $|I^c|$ when m is even: Let H denote

$$H = \left\{ i \mid i_a \in \left\{ 0, 1, \cdots, \frac{p-1}{2} \right\}, 0 \le i \le n-1, \ i \ne \frac{n}{2} \right\}.$$
 (25)

Then

$$\left|\left\{ \begin{array}{ccc} i \mid \sum_{a=0}^{m-1} i_a \not\equiv u \pmod{e} \right\} \cap I \right| = \left|\left\{ \begin{array}{ccc} i \mid \sum_{a=0}^{m-1} i_a \not\equiv u \pmod{e} \right\} \cap H \right|$$
(26)

where $I = \{ i \mid i_a \in \{ \frac{p-1}{2}, \frac{p+1}{2}, \cdots, p-1 \}, 0 \le i \le p^m - 2 \}$,

since

$$\sum_{a=0}^{m-1} i_a = \sum_{a=0}^{m-1} \left(i_a - \frac{p-1}{2} \right) + \frac{m}{2} (p-1)$$

$$\equiv \sum_{a=0}^{m-1} \left(i_a - \frac{p-1}{2} \right) \pmod{e}.$$
(27)

• Since $H \subset I^c$, the second term of (24) is upper bounded by $|\{i \mid \sum_{a=0}^{m-1} i_a \neq u \pmod{e}\} \cap I^c|$.

- When m is odd, we are only able to finish this case when p = 3.
 - -m = 1 is the trivial case yielding $L_1(S)=0$.
 - if m > 1, we observe

$$|I| = 2^m - 1$$
 and $|I^c| = 3^m - 2^m$.

– Assume $\beta = 2$ and $\lambda = 1$. Since e = 2,

$$|C| \leq \left| \left\{ i \mid \sum_{a=0}^{m-1} i_a \equiv 0 \pmod{2} \right\} \cap I^c \right| + \left| \left\{ i \mid \sum_{a=0}^{m-1} i_a \equiv 1 \pmod{2} \right\} \cap I \right|.$$

$$(28)$$

- Let $N_0(X)$ (or $N_1(X)$) denote the number of zero (or one) (mod 2) in a set of integers X. Then,

$$|C| \le N_0(I^c) + N_1(I) = \frac{3^m + 1}{2}$$

$$\le 3^m - 2^m = |I^c|.$$
(29)

Similarly, the same is true when $\beta = 2$ and $\lambda = 2$.

Conjecture

Conjecture 1 Let *S* be an S-LCE sequence of period $p^m - 1$, where p > 3 is prime and $m \ge 1$, or p = 3 and m > 1. Then

$$L_1(S) = \left(\frac{p+1}{2}\right)^m - 1.$$
 (30)

 \Rightarrow it seems true in general for all odd prim p and $m \leq 1$ except the trivial case when p = 3 and m = 1.