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| ntroduction

¢ Sidelnikov-Lempel-Cohn-Eastman sequences

e Definition of a S-LCE sequence

T’
() = 1 ifa"+1€@QNR M

0 otherwise

where QNR = {®*!t =0,1,..., 25 — 1} over Fym

e Let x(x) denote the quadratic character of x € F,» defined by

(

+1, if xis a quadratic residue
xX(z)=4¢ 0, if x=0
—1, if z iIs a quadratic nonresidue.

Yonsei University Electrical and Electronic Eng.




Coding and Information Theory Lab. 4

Then [Helleseth and Yang '01],

s(t) =

where [(z) = 1if z = 0 and I(z) = 0 otherwise.

(1—-1I(a"+1)—x(a"+1)) (2)

DN | —

e [Helleseth, Kim, and No '03]
The linear complexity over F), (not F) of a S-LCE sequence of length p™ — 1 and its
trace representation were derived when p = 3, 5, and 7.

¢ k-error linear complexity
e Denote the linear complexity of a sequence S by L(S).
e Let 7 = {z(¢)} belong to the set of all the sequences withe the same length as S.

e The k-error linear complexity of S

Li(S) = OSWHHH(IZI)SkL(S + 7). (3)
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One-error linear complexity over F), of a S-L CE sequence

e Assume z™N(t) =31+ 1) for0 < 7 <p™ —1and X € F,.

e Then the sequence Z™" = {z("Y(t)} is able to represent all the sequences over F,
such that WH(Z(™Y) < 1.

e The one-error allowed S-LCE sequence S(ZT’A) = {sg“) (1)}

(1—-I(a"+1)—x(a"+1))+ =17 +1).

S
1 A (4)
2 2

e The one-error linear complexity of a S-LCE sequence S

Ly(S)=  min  LSTY). (5)

0<T<p™—2, \eF,
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¢ Linear complexity computation (Blahut’'s theorem)

e Fourier transform for a p-ary sequence Y = {y(t)} of period n = p™ — 1

)—l

n—

1 _
A==yt € Fpn (6)
t

I
o

where « is a primitive element of F,n

e The linear complexity of Y

LY)={i]|A #0,0<i<n—1}
=p"—1-Hi|A4=0,0<i<n—-1}.

(7)
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Lemma 1 [ Helleseth, Kim, and No '03] Let the p-adic expansion of i be given as

m—1
n=0
where 0 < i < p — 1. Then, the Fourier coefficient A_;,(¢ F,=) of the S-LCE sequence

defined in (2) is given as

1 ~ - pM-1 i, 1
A=t (—(—1)@—(—1)@ I (_)) ©®

Lemma 2 The Fourier coefficient A_;(7,\) of the one-error allowed S-LCE sequence

ST defined in (4) is given as

At = (= (-1

p—1
m_y m—1 ;
. M a
+ A(=a") = (=1)" 2 <p1>> € Epm

where 17, IS defined in Lemma 1.

9)

Yonsei University Electrical and Electronic Eng.




Coding and Information Theory Lab. 8

o Special case (Upper bound on one-error L.C.)

e When o™ =1 (or = 0) and A = 1 in the one-error allowed S-LCE sequence sf’”(t) =

11 =I(a"+1) = x(a' + 1)+ 51" +1)

SOV = 11— (o + 1))

2
e Then,
L(S?’1)>:]{11A_i(0,1);é0, 0<i<pm—2}
“in= () -
where
1={ ] T () #0, 0< i <p" =2}
:{i|z’aé{pgl,p—;l,---,p—l},Ogigpm—Q} ()
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e Without calculating A_;(0, 1),

1 1 -
OVt =5 (1=xla' +1)) =5 (1= (@' + 1) 1)
_ % (1 — (o + DZiS p—zlpk)
m—1
! (1 i T Dw> (12

1 _ -1
=3 (1 — | [ (ap+aa’ + -+ ap_mzp?t)pk) :
2
k

—1
where a; = (p?) Since the characteristic is p and a; # 0 (mod p) we obtain the same
linear complexity as (10) by just counting all the sum-terms.

e This indicates

Ly(8) < (1%1)771 ~ 1. (13)
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Theorem 1 (main) Let S be an S-LCE sequence of period p™ — 1, where p is an odd

prime and m is a positive integer. Assume that m is even, or p =3 and m > 1. Then

m
Ly(S) = (fil) -
2
Table 1: Comparison of Ly and L; whenp = 3
m | Ly | L | n | (%) | 2(%)
2 7 3 8 87.5 37.5
4 73 15 80 91.3 18.8
6 697 63 728 95.7 8.7
8 | 6433 | 255 | 6560 98.1 3.9
Table 2: Comparison of Ly and L; whenp =5
m | Lo Ly n (%) | FH%)
2 21 8 24 87.5 33.3
4 608 80 624 97.4 12.8
6 15501 728 15624 99.2 4.7
8 | 389248 | 6560 | 390624 99.6 1.7

(14)

Yonsei University Electrical and Electronic Eng.



Coding and Information Theory Lab.

11

o Proof of the theorem

e We will distinguish two cases for

A_i(1,N) :—( — (—1)

p—1

as follows:

Casel.a” ¢ F,and A # 0

Case ll. o™ € F),
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oCasel.a” ¢ [,and A # 0
o Since A_;(1,\) #0ifa™ & F,

LSS > |{i|a ¢ F, 0<i<p"—2} 2N (15)

e Since

1 " —1 p+1\"
" —1) ( d) >t 2 ( : ) (16)
where d is the least positive integer such that o™ € F,

e Therefore,
1 m
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o Casell. o™ € F,
eWhenC={i|A_(r,\)=0,0<i<n-—1}
LSy =n—1C]. (18)

e Let 3=a'(€ F)),

. pm—l

C={il I (24) = (=) (1=A8), 0<i<n-1}. (19)

2

e Let ¢ denote the order of 3 thus e|(p — 1). Then we can consider two subcases in

terms of 3 as follows.

o When g=1(or7=0 (mod e))

e )\ = 1 yields the special case as
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e Since 1 — \3' #0forany \ € F,\ {1},

1 m
\C\S\Iﬂ—n—]l\—nﬁrl—(%) : (20)
e Thus,
LSy =n—1C
m (21)
> (2%1) L

o When g #1(or 7 #0 (mod e))

o If A =0, S(ZT’O) = the S-LCE sequence S for any 7. Then,
C| < |I°] as (20)

o If A £0,
Cl< il g=x"nI+|[{i| BP#£X"} NIl (22)

e Let v denote some integer such that \™! = 5“ and 0 < u < e. If © does not exist,

Ol < [T < [I. (23)
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e Otherwise, if such u exists (22) becomes

m—1
IC| < {z| Ziazu (mode)}ﬂ]c
- (24)
+ {z‘ Zza;éu (mode)}ﬂ[
a=0

since i = S Ligp® = S i, (mod e).

e Now the RHS of (24) can be upper bounded by |/¢| when m is even: Let H denote

H—{i’QE{QL~Wg%i}ﬂ§i§n—Li#g}. (25)
Then
m—1 m—1
Hz‘ Zzagéu (mode)}ﬂ] = {z‘ Zzaiu (mode)}ﬂﬂ‘ (26)
a=0 a=0
where I = {i| i, € {&2, 2. p—1}, 0<i<p"—2},
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since
_— (27)

e Since H C I¢, the second term of (24) is upper bounded by |{ i | ZZ:Ol le £ U
(mod e)} N I°.
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e When m is odd, we are only able to finish this case when p = 3.

—m = 1 is the trivial case yielding L;(.5)=0.

—if m > 1, we observe
|I| =2" —1and|[‘] = 3" —2™.

— Assume  =2and A = 1. Since e = 2,
m—1
{z‘ Zz’azo (mon)}ﬂIC
a=0
m—1
+ {z| Ziazl (mon)}ﬂ[

a=0

Ol <

(28)

— Let Ny(X) (or Ni(X)) denote the number of zero (or one) (mod 2) in a set of

integers X. Then,
3"+ 1

O] < No(I) + N(1) = 9

<3m_om = |[.

Similarly, the same is true when 6 =2 and \ = 2.
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Conjecture

Conjecture 1 Let S be an S-LCE sequence of period p”™ — 1, where p > 3 is prime and

m>1,0rp=3andm > 1. Then

Li(S) = (%)m 1. (30)

= it seems true in general for all odd prim p and m < 1 except the trivial case when

p=3and m = 1.
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