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Frequency/Time Hopping Sequence Generators

¦ Frequncey/Time Hopping (FH/TH) Systems
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• Design criteria for FH/TH sequences (i.e. non-binary sequences)

(i) with “high” security, and

(ii) over “large” alphabets, but

(iii) with “little” increase in the hardware complexity
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¦ Proposed FH/TH Sequence Generators

• The combinatorial function generator is intended to construct a FH/TH sequence with

a large linear complexity (LC)

• The k registers are used to construct a non-binary (pk-ary) sequence T over a large

alphabet from a given (p-ary) sequence S over a small alphabet
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• By increasing the parameter k, one may obtain a sequence over as a large alphabet

as one wishes

⇒ Satisfies (ii) “over a large alphabet”

• Proposed method is so simple to construct a pk-ary sequence compared with a con-

struction over Fpk because the multiplication over Fpk is much more complex than that

over Fp in the LFSR construction.

⇒ Satisfies (iii) “with little increase in the hardware complexity”

• The remaining condition is (i) “with high security”

⇒ Consider possible attacks on the FH/TH sequence generator and characterize the

generator with desired cryptographic properties to resist these possible attacks
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Attack Scenarios and Desired Cryptographic Properties

¦ Attack Scenario 1: Berlekamp-Massey (BM) Attacks
- Attacker scans the whole frequency/time slots and does not know the structure of the

FH/TH sequence generator

- Synthesize the LFSR that generates an FH/TH sequence T from successively ob-

served symbols using BM algorithm

⇒ T must have large LC!
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• S(i), i = 1, 2, . . . , N : sequences over Fp

• Combinatorial function sequence S over Fp in the algebraic normal form

sn = f (s(1)
n , s(2)

n , . . . , s(N)
n )

= a0 +
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ais
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n +
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aijs
(i)
n s(j)

n + . . . + a12...Ns(1)
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n . . . s(N)
n

(1)

• k-tuple sequence, FH/TH sequence, T (k, S) over Fpk using some but fixed basis

t(k, S)n = (sn, sn−1, . . . , sn−k+1) (2)

• Maximum possible LC of T (k, S) for the given algebraic normal form f

M = F (M (1),M (2), . . . , M (N)) (3)

– M (i): LC of S(i)

– F (·) is defined as f (·) in (1)

– Operations are over the integers

– Coefficient is 0 if it is 0 or 1 otherwise, respectively
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Theorem 1 [Hong et al. ’06] Let S(i), i = 1, 2, . . . , N , be sequences over Fp with minimal

polynomials CS(i)(x) of degree M (i), that divide xpm(i)−1 − 1 for some m(i) and contain no

linear factor. For any pair of distinct roots, α and β, of CS(i)(x), i = 1, 2, . . . , N , αβ−1 /∈ Fp.

If k, m(i), i = 1, 2, . . . , N are pairwise relatively prime, then T (k, S) over Fpk as defined

in (2) has the minimal polynomial of degree M as defined in (3) for the given algebraic

normal form f .

⇒ Characterize those LFSRs such that the FH/TH sequence, T (k, S), has the maximum

possible LC

• The only remaining component to be characterized for security is a combinatorial

function, i.e. a p-ary function

⇒ Consider desired cryptographic properties of p-ary functions to resist other cryp-

tographic attacks than the BM attack

⇒ Focus on the extensions of the cryptographic properties of the Boolean function

to those of the p-ary case
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¦ Attack Scenario 2: Partial Band Jamming or (Multi) Tone Jamming
- Attacker does not care about the structure of the FH sequence generator

- Radiate Gaussian noise in the partial band or Gaussian (multi) tone

⇒ T must be balanced!

• s
(i)
n , n = 1, 2, . . .: iid discrete uniform random variables (RVs)

• s
(i)
n , i = 1, 2, . . . , N : mutually independent

• If f is balanced, sn, n = 1, 2, . . ., are iid discrete uniform RVs, and therefore T is

balanced

⇒ Construct p-ary balanced functions
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• f (X): p-ary function with N arguments

– f (X) ∈ Fp and X = (X1, X2, . . . , XN)

• |f r|: number of input vectors X such that f (X) = r

Definition 1 A p-ary function f (X) is balanced if and only if |f r| = pN−1 for all r ∈ Fp.

Theorem 2 Let f (X) = g(f1(X1), f2(X2), . . . , fK(XK), XK+1), where X = (X1, X2, . . . , XK+1)

and X i ∩Xj = ∅ for 1 ≤ i, j ≤ K + 1 and i 6= j. If p-ary functions fi(X i), i = 1, 2, . . . , K,

and g(U1, U2, . . . , UK, XK+1) are balanced, then f (X) is also balanced.

⇒ Construct a p-ary balanced function by the disjunctive composition of balanced func-

tions by a balanced function
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• Non-disjunctive composition of f1(X1) and g(U, X2) such that X1 ∩X2 6= ∅

Theorem 3 Let f (X) = g(f1(X1), X1 ∩ X2, X2 − X1), where f1(X1) is a p-ary function,

X = X1 ∪X2, X2 −X1 6= ∅, and |X2| = N . For any combination d of X1 ∩X2 and r ∈ Fp,

|g(u, d, X2 − X1)
r| is constant for u ∈ Fp. Then, f (X1 ∪ X2) is balanced if and only if

|g(u, X2)
r| = pN−1 for all r, u ∈ Fp.

⇒Characterize a non-disjunctive composition which produces a balanced p-ary functions

Corollary 1 Let f2(X2) be a p-ary linear function. Then, f (X) = f1(X1) + f2(X2) is bal-

anced if X2 −X1 6= ∅.

⇒ Construct a balanced p-ary function by simply adding a linear function with disjoint

arguments
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¦ Attack Scenario 3: Linear Attacks
- Attacker knows the structure of the FH/TH sequence generator except f

- Obtain the linear approximate expression of the p-ary function f

⇒ f must have high nonlinearity!

• Perfect nonlinear p-ary function, i.e. a p-ary bent function, is optimum with respect to

both the minimum distance to affine functions and therefore a resistance to the linear

attack, but does not balanced

⇒ Construct a balanced p-ary function with suboptimal nonlinearity, i.e. a propaga-

tion
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Definition 2 A p-ary function f (X) satisfies the propagation of degree l if for all vector A

with 1 ≤ W (A) ≤ l

f (X + A)− f (X) (4)

is balanced, where W (·) is the Hamming weight.

• Strict avalanche criterion is the propagation of degree one

• Perfect nonlinearity is the propagation of degree N

Electrical and Electronic Eng.Yonsei University



Coding and Information Theory Lab. 12

• g: p-ary bent function, i.e. perfect nonlinear function, with N arguments

Theorem 4 Let a p-ary function f with N + 2 arguments be given by

f (X1, X2, . . . , XN+2) = a1X1 + a2X2 + a3g(X3, X4, . . . , XN+2), (5)

where a1, a2, and a3 are nonzero elements in Fp. Then, f (X) is balanced and satisfies

the propagation for all nonzero vectors A ∈ FN+2
p with A 6= (c1, c2, 0, 0, . . . , 0).

Theorem 5 Let a p-ary function f with N + 1 arguments be given by

f (X1, X2, . . . , XN+1) = a1X1 + a2g(X2, X3, . . . , XN+1), (6)

where a1 and a2 are nonzero elements in Fp. Then, f (X) is balanced and satisfies the

propagation for all nonzero vectors A ∈ FN+1
p with A 6= (c, 0, 0, . . . , 0).

⇒ Construct a balanced p-ary function which satisfies the propagation for the most of

nonzero vectors from the bent function which is not balanced
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Corollary 2 Let a p-ary function f ∗ with N + 1 arguments be given by

f ∗(X1, X2, . . . , XN+1) = a1X1+g(a2X1+b2X2, a3X1+b3X3, . . . , aN+1X1+bN+1XN+1), (7)

where ai and bi, i = 1, 2, . . . , N , are nonzero elements in Fp and ai + bi = 0. Then, f ∗(X)

is balanced and satisfies the propagation of degree N .

⇒ Construct a balanced p-ary function which satisfies the suboptimum nonlinearity
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¦ Attack Scenario 4: Correlation Attacks
- Attacker knows the structure of the FH/TH sequence generator except a key K(i),

which determines the initial state of an i-th LFSR

- correlate the combinatorial function sequence S with the i-th LFSR’s sequence S(i)

to choose K(i)

⇒ f must be correlation-immune!
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• Xi, i = 1, 2, . . . , N : mutually independent discrete uniform RVs

• Z = f (X): discrete RV produced by f

Definition 3 A p-ary function f (X) is m-th order correlation-immune if Z = f (X) is inde-

pendent of every subset of m random variables chosen from X1, X2, . . . , XN .

• The Fourier transform of σf(X)

F (ω) =
∑

X∈FN
p

σf(X)−ω·X . (8)

– σ = ei2π
p , i.e. the primitive p-th root of unity in the complex field
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Theorem 6 If a p-ary function f (X) is m-th order correlation-immune, then the Fourier

transform of σf(X) satisfies F (ω) = 0 for 1 ≤ W (ω) ≤ m.

⇒ Necessary condition such that p-ary functions are correlation-immune by the Fourier

transform

• X. Guo-Zhen et al. (’88) showed that the converse of Theorem 6 holds in binary case
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¦ Other attacks

• Attacker may try an algebraic attack by multiplying the combinatorial function f by a

well-chosen multivariate polynomial

⇒ By increasing the order of Fp, the monomials of linear equations to be solved will

considerably increase

⇒ FH/TH sequence generator may be more resistent to the algebraic attack

• Attacker may try a transformation attack by simply transforming the combinatorial

function f to a cryptographically weak one

⇒ Verified that the followings are invariant under the group of all affine transforma-

tions

– Minimum distance to affine functions
– Minimum distance to functions with linear structures
– Minimum distance to functions of nonlinear order k

– Nonlinear order
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Concluding Remarks

• BM attacks → Large LC

• Jamming → Balanced

• Linear attacks → High Nonlinearity

• Correlation attacks → High Order Correlation Immunity

⇒ No crypto system optimally satisfies the above all properties!
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