High Security Frequency/Time Hopping Sequence Generators

2007. 9. 27.

Yun-Pyo Hong, Seok-Yong Jin, and Hong-Yeop Song

Yonsei University

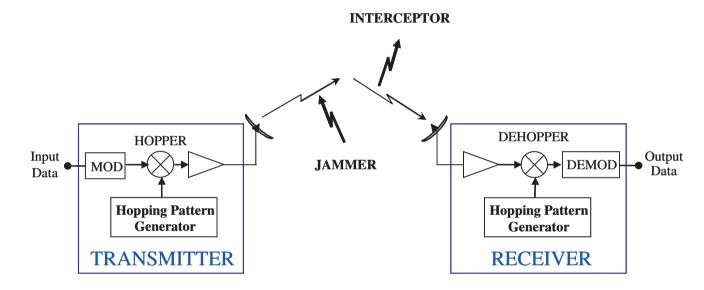
Seoul, Korea

Electrical and Electronic Eng. Yonsei University

-1

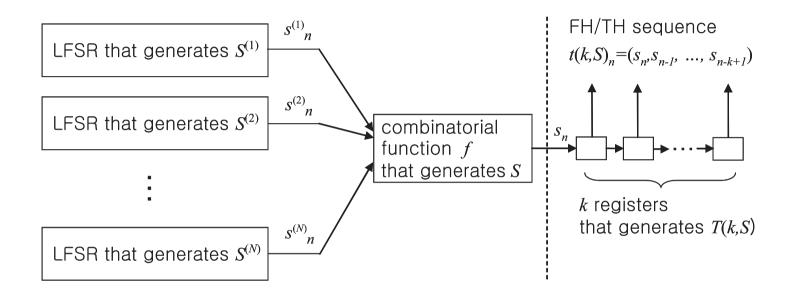
Frequency/Time Hopping Sequence Generators

◊ Frequncey/Time Hopping (FH/TH) Systems



- Design criteria for FH/TH sequences (i.e. non-binary sequences)
 - (i) with "high" security, and
 - (ii) over "large" alphabets, but
 - (iii) with "little" increase in the hardware complexity

◊ Proposed FH/TH Sequence Generators



- The combinatorial function generator is intended to construct a FH/TH sequence with a large linear complexity (LC)
- The k registers are used to construct a non-binary (p^k -ary) sequence T over a large alphabet from a given (p-ary) sequence S over a small alphabet

- By increasing the parameter k, one may obtain a sequence over as a large alphabet as one wishes
 - \Rightarrow Satisfies (ii) "over a large alphabet"
- Proposed method is so simple to construct a *p^k*-ary sequence compared with a construction over F_{*p^k*} because the multiplication over F_{*p^k*} is much more complex than that over F_{*p*} in the LFSR construction.
 - \Rightarrow Satisfies (iii) "with little increase in the hardware complexity"
- The remaining condition is (i) "with high security"

 \Rightarrow Consider possible attacks on the FH/TH sequence generator and characterize the generator with desired cryptographic properties to resist these possible attacks

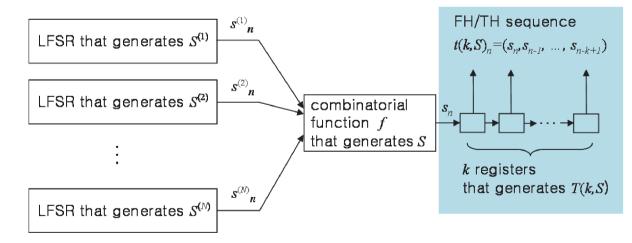
Attack Scenarios and Desired Cryptographic Properties

Attack Scenario 1: Berlekamp-Massey (BM) Attacks

- Attacker scans the whole frequency/time slots and does not know the structure of the FH/TH sequence generator

- Synthesize the LFSR that generates an FH/TH sequence T from successively observed symbols using BM algorithm

 \Rightarrow T must have large LC!



Electrical and Electronic Eng. Yonsei University

•
$$S^{(i)}, i = 1, 2, ..., N$$
: sequences over \mathbb{F}_p

• Combinatorial function sequence S over \mathbb{F}_p in the algebraic normal form

$$s_{n} = f(s_{n}^{(1)}, s_{n}^{(2)}, \dots, s_{n}^{(N)})$$

$$= a_{0} + \sum_{i=1}^{N} a_{i}s_{n}^{(i)} + \sum_{i=1}^{N} \sum_{j=i+1}^{N} a_{ij}s_{n}^{(i)}s_{n}^{(j)} + \dots + a_{12\dots N}s_{n}^{(1)}s_{n}^{(2)} \dots s_{n}^{(N)}$$
(1)

• k-tuple sequence, FH/TH sequence, T(k,S) over \mathbb{F}_{p^k} using some but fixed basis

$$t(k,S)_n = (s_n, s_{n-1}, \dots, s_{n-k+1})$$
 (2)

• Maximum possible LC of T(k, S) for the given algebraic normal form f

$$M = F(M^{(1)}, M^{(2)}, \dots, M^{(N)})$$
(3)

- $M^{(i)}$: LC of $S^{(i)}$
- $F(\cdot)$ is defined as $f(\cdot)$ in (1)
- Operations are over the integers
- Coefficient is 0 if it is 0 or 1 otherwise, respectively

Theorem 1 [Hong et al. '06] Let $S^{(i)}$, i = 1, 2, ..., N, be sequences over \mathbb{F}_p with minimal polynomials $C_{S^{(i)}}(x)$ of degree $M^{(i)}$, that divide $x^{p^{m^{(i)}}-1} - 1$ for some $m^{(i)}$ and contain no linear factor. For any pair of distinct roots, α and β , of $C_{S^{(i)}}(x)$, i = 1, 2, ..., N, $\alpha\beta^{-1} \notin \mathbb{F}_p$. If k, $m^{(i)}$, i = 1, 2, ..., N are pairwise relatively prime, then T(k, S) over \mathbb{F}_{p^k} as defined in (2) has the minimal polynomial of degree M as defined in (3) for the given algebraic normal form f.

 \Rightarrow Characterize those LFSRs such that the FH/TH sequence, T(k,S), has the maximum possible LC

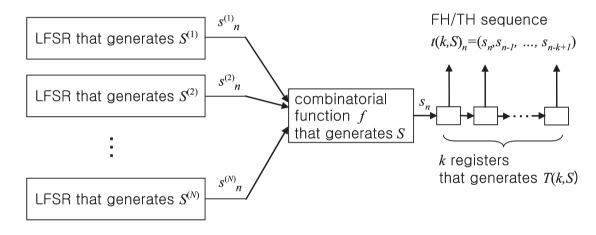
• The only remaining component to be characterized for security is a combinatorial function, i.e. a *p*-ary function

 \Rightarrow Consider desired cryptographic properties of *p*-ary functions to resist other cryptographic attacks than the BM attack

 \Rightarrow Focus on the extensions of the cryptographic properties of the Boolean function to those of the *p*-ary case

Attack Scenario 2: Partial Band Jamming or (Multi) Tone Jamming

- Attacker does not care about the structure of the FH sequence generator
- Radiate Gaussian noise in the partial band or Gaussian (multi) tone
- \Rightarrow T must be balanced!



- $s_n^{(i)}$, n = 1, 2, ...; *iid* discrete uniform random variables (RVs)
- $s_n^{(i)}$, i = 1, 2, ..., N: mutually independent
- If f is balanced, s_n , n = 1, 2, ..., are *iid* discrete uniform RVs, and therefore T is balanced
 - \Rightarrow Construct *p*-ary balanced functions

7

- $f(\overline{X})$: *p*-ary function with *N* arguments
 - $-f(\overline{X}) \in \mathbb{F}_p \text{ and } \overline{X} = (X_1, X_2, \ldots, X_N)$
- $|f^r|$: number of input vectors \overline{X} such that $f(\overline{X}) = r$

Definition 1 A *p*-ary function $f(\overline{X})$ is balanced if and only if $|f^r| = p^{N-1}$ for all $r \in \mathbb{F}_p$.

Theorem 2 Let $f(\overline{X}) = g(f_1(\overline{X}_1), f_2(\overline{X}_2), \ldots, f_K(\overline{X}_K), \overline{X}_{K+1})$, where $\overline{X} = (\overline{X}_1, \overline{X}_2, \ldots, \overline{X}_{K+1})$ and $\overline{X}_i \cap \overline{X}_j = \emptyset$ for $1 \le i, j \le K+1$ and $i \ne j$. If *p*-ary functions $f_i(\overline{X}_i), i = 1, 2, \ldots, K$, and $g(U_1, U_2, \ldots, U_K, \overline{X}_{K+1})$ are balanced, then $f(\overline{X})$ is also balanced.

 \Rightarrow Construct a *p*-ary balanced function by the disjunctive composition of balanced functions by a balanced function • Non-disjunctive composition of $f_1(\overline{X}_1)$ and $g(U, \overline{X}_2)$ such that $\overline{X}_1 \cap \overline{X}_2 \neq \emptyset$

Theorem 3 Let $f(\overline{X}) = g(f_1(\overline{X}_1), \overline{X}_1 \cap \overline{X}_2, \overline{X}_2 - \overline{X}_1)$, where $f_1(\overline{X}_1)$ is a *p*-ary function, $\overline{X} = \overline{X}_1 \cup \overline{X}_2, \overline{X}_2 - \overline{X}_1 \neq \emptyset$, and $|\overline{X}_2| = N$. For any combination \overline{d} of $\overline{X}_1 \cap \overline{X}_2$ and $r \in \mathbb{F}_p$, $|g(u, \overline{d}, \overline{X}_2 - \overline{X}_1)^r|$ is constant for $u \in \mathbb{F}_p$. Then, $f(\overline{X}_1 \cup \overline{X}_2)$ is balanced if and only if $|g(u, \overline{X}_2)^r| = p^{N-1}$ for all $r, u \in \mathbb{F}_p$.

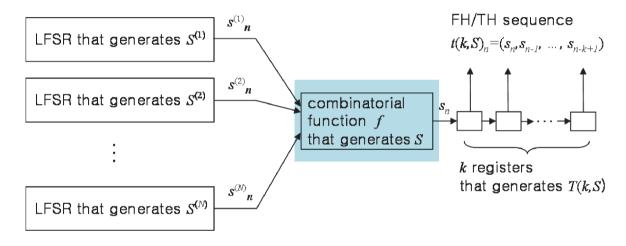
 \Rightarrow Characterize a non-disjunctive composition which produces a balanced *p*-ary functions

Corollary 1 Let $f_2(\overline{X}_2)$ be a *p*-ary linear function. Then, $f(\overline{X}) = f_1(\overline{X}_1) + f_2(\overline{X}_2)$ is balanced if $\overline{X}_2 - \overline{X}_1 \neq \emptyset$.

 \Rightarrow Construct a balanced *p*-ary function by simply adding a linear function with disjoint arguments

◊ Attack Scenario 3: Linear Attacks

- Attacker knows the structure of the FH/TH sequence generator except f
- Obtain the linear approximate expression of the p-ary function f
- \Rightarrow f must have high nonlinearity!



• Perfect nonlinear *p*-ary function, i.e. a *p*-ary bent function, is optimum with respect to both the minimum distance to affine functions and therefore a resistance to the linear attack, but does not balanced

 \Rightarrow Construct a balanced *p*-ary function with suboptimal nonlinearity, i.e. a propagation

Definition 2 A *p*-ary function $f(\overline{X})$ satisfies the propagation of degree l if for all vector \overline{A} with $1 \le W(\overline{A}) \le l$

$$f(\overline{X} + \overline{A}) - f(\overline{X}) \tag{4}$$

is balanced, where $W(\cdot)$ is the Hamming weight.

- Strict avalanche criterion is the propagation of degree one
- Perfect nonlinearity is the propagation of degree ${\cal N}$

• g: p-ary bent function, i.e. perfect nonlinear function, with N arguments

Theorem 4 Let a *p*-ary function f with N + 2 arguments be given by

$$f(X_1, X_2, \dots, X_{N+2}) = a_1 X_1 + a_2 X_2 + a_3 g(X_3, X_4, \dots, X_{N+2}),$$
(5)

where a_1 , a_2 , and a_3 are nonzero elements in \mathbb{F}_p . Then, $f(\overline{X})$ is balanced and satisfies the propagation for all nonzero vectors $\overline{A} \in \mathbb{F}_p^{N+2}$ with $\overline{A} \neq (c_1, c_2, 0, 0, \ldots, 0)$.

Theorem 5 Let a *p*-ary function f with N + 1 arguments be given by

$$f(X_1, X_2, \ldots, X_{N+1}) = a_1 X_1 + a_2 g(X_2, X_3, \ldots, X_{N+1}),$$
(6)

where a_1 and a_2 are nonzero elements in \mathbb{F}_p . Then, $f(\overline{X})$ is balanced and satisfies the propagation for all nonzero vectors $\overline{A} \in \mathbb{F}_p^{N+1}$ with $\overline{A} \neq (c, 0, 0, \ldots, 0)$.

 \Rightarrow Construct a balanced *p*-ary function which satisfies the propagation for the most of nonzero vectors from the bent function which is not balanced

Corollary 2 Let a *p*-ary function f^* with N + 1 arguments be given by

 $f^*(X_1, X_2, \ldots, X_{N+1}) = a_1 X_1 + g(a_2 X_1 + b_2 X_2, a_3 X_1 + b_3 X_3, \ldots, a_{N+1} X_1 + b_{N+1} X_{N+1}),$ (7) where a_i and b_i , $i = 1, 2, \ldots, N$, are nonzero elements in \mathbb{F}_p and $a_i + b_i = 0$. Then, $f^*(\overline{X})$ is balanced and satisfies the propagation of degree N.

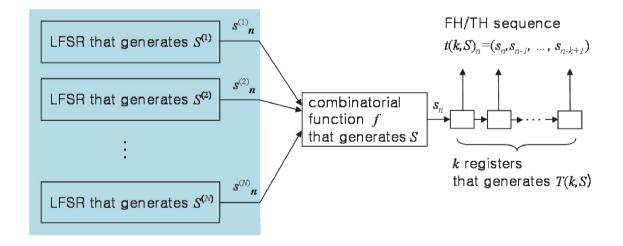
 \Rightarrow Construct a balanced *p*-ary function which satisfies the suboptimum nonlinearity

◊ Attack Scenario 4: Correlation Attacks

- Attacker knows the structure of the FH/TH sequence generator except a key $K^{(i)}$, which determines the initial state of an *i*-th LFSR

- correlate the combinatorial function sequence S with the *i*-th LFSR's sequence $S^{(i)}$ to choose $K^{(i)}$

 \Rightarrow *f* must be correlation-immune!



- X_i , i = 1, 2, ..., N: mutually independent discrete uniform RVs
- $Z = f(\overline{X})$: discrete RV produced by f

Definition 3 A *p*-ary function $f(\overline{X})$ is *m*-th order correlation-immune if $Z = f(\overline{X})$ is independent of every subset of *m* random variables chosen from X_1, X_2, \ldots, X_N .

• The Fourier transform of $\sigma^{f(\overline{X})}$

$$F(\overline{\omega}) = \sum_{\overline{X} \in \mathbb{F}_p^N} \sigma^{f(\overline{X}) - \overline{\omega} \cdot \overline{X}}.$$
(8)

 $-\sigma = e^{i\frac{2\pi}{p}}$, i.e. the primitive *p*-th root of unity in the complex field

Theorem 6 If a *p*-ary function $f(\overline{X})$ is *m*-th order correlation-immune, then the Fourier transform of $\sigma^{f(\overline{X})}$ satisfies $F(\overline{\omega}) = 0$ for $1 \le W(\overline{\omega}) \le m$.

 \Rightarrow Necessary condition such that *p*-ary functions are correlation-immune by the Fourier transform

• X. Guo-Zhen et al. ('88) showed that the converse of Theorem 6 holds in binary case

◊ Other attacks

• Attacker may try an algebraic attack by multiplying the combinatorial function f by a well-chosen multivariate polynomial

 \Rightarrow By increasing the order of F_p , the monomials of linear equations to be solved will considerably increase

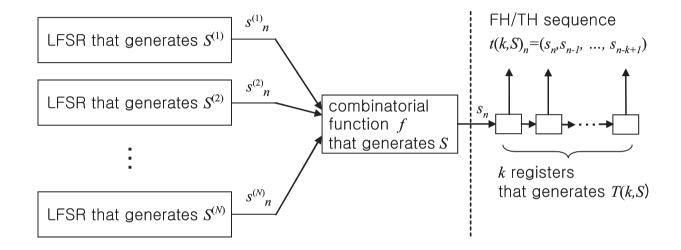
 \Rightarrow FH/TH sequence generator may be more resistent to the algebraic attack

 Attacker may try a transformation attack by simply transforming the combinatorial function *f* to a cryptographically weak one

 \Rightarrow Verified that the followings are invariant under the group of all affine transformations

- Minimum distance to affine functions
- Minimum distance to functions with linear structures
- Minimum distance to functions of nonlinear order k
- Nonlinear order

Concluding Remarks



- $\bullet \text{ BM attacks} \rightarrow \text{Large LC}$
- $\bullet \ Jamming \to Balanced$
- Linear attacks \rightarrow High Nonlinearity
- \bullet Correlation attacks \rightarrow High Order Correlation Immunity
- \Rightarrow No crypto system optimally satisfies the above all properties!