

New DH protocol based on distance-bounding technique for peer-to-peer wireless network

22nd November, 2007

CITL

Seon-Yeong PARK, Ju-Young KIM and <u>Hong-Yeop SONG</u> Yonsei University, Coding and Information Theory Lab {sy.park, jy.kim, hysong} @yonsei.ac.kr

Some Pictures of Tor

Contents

Introduction

Preliminary

- Commitment scheme
- MITM attack
- DH protocol, distance-bounding protocol
- Existing DH-DB protocol
- Improved DH-DB protocol
- Result and Discussion
- Conclusion

Introduction

Peer-to-peer key agreement protocol

- Auto configuration of mobile router without shared secret
- DH (Diffie-Hellman) protocols
 - Vulnerability against the MITM attacks
 - Involvement of users
 - Needs of physical devices
- Design of improved DH-DB (Distance-Bounding)
 - Improvement of resistance to attacks
 - Optimization of protocol

DH Protocol^[1]

Alice		Bob			
$\begin{array}{c} \text{Given ID}_{A}, \ g\\ \text{Pick } \textbf{X}_{A}, \ \text{and calculate } \textbf{g}^{\textbf{X}_{A}}\\ \text{Pick } N_{A} \in_{U} \{0,1\}^{k}\\ m_{A} \leftarrow 0 \ \text{ID}_{A} \ \textbf{g}^{\textbf{X}_{A}} \ N_{A}\\ (L_{A}, K_{A}) \leftarrow \text{commit}(m_{A}) \end{array}$	$\xrightarrow{L_A}$ \leftarrow $\xrightarrow{L_B}$ \leftarrow K_A	Given ID _B , g Pick X_B , and calculate g^{X_B} Pick $N_B \in \bigcup \{0,1\}^k$ $m_B \leftarrow 1 \parallel ID_B \parallel g^{X_B} \parallel N_B$ $(L_B, K_B) \leftarrow commit(m_B)$			
$\begin{array}{c} m_{B} \leftarrow \text{open} \ (L_{B} \ , K_{B}) \\ \text{Verify 1 in } m_{B}; \ i_{A} \leftarrow N_{A} \oplus N_{B} \\ \text{Verify } i_{A} = i_{B} \end{array}$	$ \begin{array}{c} \stackrel{K_{A}}{\leftarrow} & \stackrel{K_{B}}{\leftarrow} \\ \stackrel{i_{A}}{\leftarrow} & \stackrel{i_{B}}{\leftarrow} \\ \end{array} $	$\begin{array}{l} \textbf{m}_{A} \leftarrow \textbf{open} \ (\textbf{L}_{A} \ , \textbf{K}_{A}) \\ \textbf{Verify 0 in } \textbf{m}_{A} \textbf{; } \textbf{i}_{B} \leftarrow \textbf{N}_{B} \oplus \textbf{N}_{A} \\ \textbf{Verify i}_{B} \textbf{=} \textbf{i}_{A} \end{array}$			
If $i_A = i_B$, Alice and Bob accept m_B and m_A , respectively.					
Generate (g ^x _B) ^x _A		Generate (g ^X A) ^X B			

[1] M. Cagalj and J. -P. Hubaux, "Key agreement protocol over a radio link,"EPFL-IC-ICA, Teck. Rep. IC/2004/16, Jan. 2004.

Commitment Scheme^[2]

Commitment/opening pair

- L=(y, f) is a Locked box.
- K=(x) is a Key.

Commitment procedure

- Pick universal hash function f and x at random so that f(x)=m.
- Compute y=h(x), where h is a collision-free hash function.
- 3. Send L=(y, f) to receiver.

Opening procedure

- 1. Send K=(x) to receiver.
- 2. Receiver computes f(x)=m.

[2] S. Halevi and S. micali, "Practical and Provably-Secure Commitment Schemes from Collision-Free Hashing," *CRYPTO 96, pp. 201-215, Lecture Notes in Computer* Science, Springer-Verlag, 1996.

MITM Attack

Distance-bounding Protocol^[3]

- Single-bit challenge and rapid single-bit response
- Upper-bound the distance between two parties based on the maximum of the delay time for responses
- Two parties communicate when they are close by.

[3] S. Brands and D. Chaum, "Distance-bounding protocols," EUROCRYPT, Heidelberg, Germany: Springer-Verlag, vol. 765, *Lecture Notes in Computer Science*, pp. 344-359, 1993.

Environment

RF and sound capability^[4]

For accurate estimation of the distance between two parties

Local verification protocol^[5]

• The measured distance appears on both device displays and the users then visually check whether there are other users/devices closer to them than the displayed distance bounds.

[4] R, Fontana, "Experimental results from an ultra wideband precision geolocation system," *Proc. Ultra-Wideband, Short-Pulse Electromagnetics 5*, pp. 215-224, 2002.

[5] N. Sastry, U. Shankar, and D. Wagner, "Secure verification of location claims," *Proc. ACM Workshop Wireless Security (WISe)*, pp. 1-10, 2003.

Existing DH-DB Protocol^[6](1/3)

Initialization phase

Eve can collect c_A , d_A (or c_B , d_B) and get secret DH key.

Existing DH-DB Protocol^[6](2/3)

Existing DH-DB Protocol^[6](3/3)

Verification phase

[6] M. Cagalj, S. Capkun, and J. -P. Hubaux, "Key agreement in peer-to-peer wireless networks," *Proceedings of the IEEE,* Volume 94, Issue 2, Feb. 2006.

Analysis of Existing DH-DB

Verification phase

- Vulnerable to the MITM attack
- Insecure in reuse of DH public parameter

Distance-bounding phase

• Complicated procedures to hide verification string

Initialization phase

• Generate unnecessary random string for distance-bounding

New Design (Improved)

Commitment/opening triplet (f, y, x)

- f is an index of universal hash function
- x is a random string such that f(x)=m where m is a message
- y is a k-bit output of the collision-free hash function h(x), used for measuring RTT

Reordering of procedure

Park-Kim-Song

Security

Resistance against the MITH attack

- Eve cannot open m without x.
- h is a one-way hash function: Eve cannot find x easily even though she knows y, where h(x)=y.

We can use **y** for measuring RTT without any loss in security!

Secure reusability of DH public parameter

 The protocol is broken if Eve exists in integrity region before Alice and Bob exchange x_A and x_B.

Improved DH-DB (1/3)

Initialization phase

• Generate commitment/opening triplet

Improved DH-DB (2/3)

Improved DH-DB (3/3)

• Secure reuse of DH public parameter

Structure of Protocol (Summary)

Initialization and commitment	Pick DH exponentCommit messages (Send a locked box)
Distance- bounding	 Upper-bound the distance and make integrity region
Visual check	 Check the existence of attacker in the integrity region
Opening and verification	Open messages(Unlock the box)Check verification string for integrity

Analysis of Performance

Assumption

- Same universal and collision-free hash function
- Only consider XOR operation
- 3-DES random generator

Result

	Message (success)	Message (fail)	Parameters	XOR Operation
Existing	2k+6	2k+4	18	-
Proposed	2k+6	2k+2	14	Reduce (7682*(k/64)- 64)*2 operations

• When k=64, the number of reduced XOR operation is 15,236.

Conclusion

Contribution

- Provide improved DH-DB to the fundamental problem of key agreement over a radio link
- Appropriate for devices which have limited power, limited memory, and limited computational power.

