Hadamard Equivalence of Binary Matrices

Ki-Hyeon Park and Hong-Yeop Song

Coding and Crypto Lab Yonsei University, Seoul, KOREA

The 15th Asia-Pacific Conference on Communications (APCC 2009) Regal Shanghai East Asia Hotel October 8-10, 2009

In this talk

- A Brief Review about the Hadamard Equivalence
- Basic Definitions and Theorems
- Proposed Scheme and its Applications
- Some New Problems and Concluding Remarks

Hadamard Matrix

A Hadamard matrix of order *n* (or, size *n* × *n*) is defined as an *n* × *n* matrix with all entries +1 or −1 such that

$$H \cdot H^T = nI,$$

where *I* is the $n \times n$ identity matrix.

• In other word, the rows of a Hadamard matrix are orthogonal

Studies on Hadamard Matrices

- Hadamard matrix is widely used in communication and signal processing:
 - Orthogonal Channelization in CDMA communication systems
 - Construction of orthogonal signals and LCZ/ZCZ signals
 - Hadamard Transform is widely used in image processing
- Theoretical/Mathematical research on Hadamard matrices:
 - Existence/Constructions
 - Classification/Equivalence/Inequivalence
- This paper is to study on how to check equivalence of two Hadamard matrices EFFICIENTLY, and generalize this idea to binary matrices in general

A (10) A (10)

Hadamard Equivalence

- If *H* is a Hadamard matrix, then the matrix that is the result of applying following operations to *H* is also a Hadamard matrix:
 - ► Multiply -1 to all elements of some rows
 - Multiply –1 to all elements of some columns
 - Row permutation (Exchange the position of rows)
 - Column permutation
- These operations are called as 'Hadamard-preserving operation'.
- If a Hadamard matrix *B* can be obtained by applying Hadamard-preserving operations to *H*, then we say *H* and *B* are Hadamard-equivalent

Number of Inequivalent Matrices

The size of matrices	Number of Inequivalent Hadamard Matrices	
1,2,4,8,12	1	
16	5	
20	3	
24	60	
28	487	
≥ 32	Unknown	

Integer Representation of a Binary Matrix

Definition

Let $A = (a_{ij})$ be an $m \times n$ binary matrix, where i = 1, 2, ..., m and j = 1, 2, ..., n. Then,

$$\rho(A) \stackrel{\Delta}{=} \sum_{i=1}^{m} \sum_{j=1}^{n} \left[a_{ij} 2^{n(m-i)+(n-j)} \right].$$
(1)

Example:

$$\rho \begin{pmatrix}
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix} = 0101\ 0110\ 1001\ 1110_{(2)} = 22174$$

A (10) > A (10) > A

Basic Definitions and Theorems

Minimal Matrix - Example

Description of the Proposed Scheme

To Check Equivalence/Inequivalence

- Two binary matrices are Hadamard-equivalent if they belong to the same class
- An equivalence class has only one minimal matrix
- Find the minimal matrices of (classes of) two binary matrices in question, and then see if they are the same or not
- How to find it?

Theorem

- All elements in the first row and the first column of a minimal matrix are zero.
- 2 Given a binary matrix H and its minimal matrix L, there exist permutation matrices P_r and P_c (not necessarily unique) such that

$$L = N(P_r H P_c). \tag{2}$$

When P_r and the first column of P_c are known, the remaining columns of P_c can be determined in (2).

- Checking whole P_r and the first column of $P_c = \mathcal{O}(m!n)$
- Determining $P_c = \mathcal{O}(nlogn)$ using Quicksort
- Overall complexity: $\mathcal{O}((m!)n^2 \log n)$

Problem	Result	CPU Time
20×20 Williamson - apply HPOs randomly	All equivalent deci- sion	40 seconds for each
All 24 × 24 inequiva- lent Hadamard matri- ces	All inequivalent deci- sion	3 to 15 minutes for each
60 × 60 Paley I/II	Inequivalent decision	I: 30 hours, II: 3 hours
32×32 Sylvester / Kro- necker	Equivalent Decision by Fast check method	Approximately 100 days

Examples of Order 24

Minimal Matrices of Payley type I and II

 \implies This shows they are inequivalent.

Some New Problems and Concluding Remarks

Conclusion and Future Work

- We propose an efficient scheme to check Hadamard-equivalence of binary matrices
- We show the results of this scheme for some Hadamard matrices and 2 × 2 binary matrices
- We also propose a faster version (in the paper)
- Generalization of this idea to the set of $m \times n$ binary matrices
- Could lead to new and interesting combinatorial problems