Hadamard Equivalence on Binary Matrices - new combinatorial problem

Ki-Hyeon Park and <u>Hong-Yeop Song</u> hysong@yonsei.ac.kr

Coding and Crypto Lab School of Electrical and Electronic Engineering Yonsei University

> December 16-19 2009 Joint meeting of AMS-KMS Ewha Womans University Seoul, Korea

In this talk

Introduction

- Hadamard Matrix
- Hadamard Equivalence
- Main Results
 - Classification of binary matrices
 - Pseudo-Hadamard matrices
 - Some Theorems and a Conjecture
 - Result of Exhaustive Search and More
- Concluding Remarks
 - More Conjectures and Open Problems

Hadamard Matrix

 A Hadamard matrix of order n (or, size n×n) is defined as an n×n matrix with all entries +1 or -1 such that

$$H H^T = n I,$$

where *I* is the $n \times n$ identity matrix.

• Hadamard Conjecture: There exists a Hadamard matrix of order every multiple of 4.

Hadamard Matrix over {0, 1}

- A Hadamard matrix can be represented as a binary matrix over {0,1}.
- In this talk, we consider the binary matrices over {0,1}.

Studies on Hadamard Matrices

- Hadamard matrix is widely used in communications and signal processing engineering:
 - Orthogonal Channelization in CDMA communication systems
 - Construction of orthogonal signals and LCZ/ZCZ signals
 - Hadamard Transform is widely used in image processing
- Theoretical/Mathematical research on Hadamard matrices:
 - Existence/Constructions
 - Classification/Equivalence

This paper is to study the classification of binary matrices in terms of Hadamard equivalence

Hadamard Equivalence on Binary Matrices

Definition 1 (Hadamard-preserving operation)

- PC/PR: Permuting columns (PC) / rows (PR)
- CC/CR: Complementing a column (CC) / a row (CR)

Definition 2 (Hadamard Equivalence)

Two binary matrices of the same size are said to be hadamardequivalent if one can be converted to the other by some combinations of the hadamard-preserving operations.

Hadamard-equivalent binary matrices have the same correlation property (in absolute value).

• We use the alphabet {0,1}, so the correlation is calculated as the difference between the number of agreements and that of disagreements of the components.

Number of inequivalent Hadamard matrices

Size	Number	Reference
1, 2, 4, 8, 12	1	
16	5	
20	3	
24	60	Kimura, 1989
28	487	Kimura, 1994
>32	Unknown	

Integer Representation of Binary Matrices

• **Definition 3**: Let $A = (a_{ij})$ be an $m \times n$ binary matrix where i = 1, 2, ..., m and j = 1, 2, ..., n. We define a map ρ as

$$\rho(A) \stackrel{\triangle}{=} \sum_{i=1}^{m} \sum_{j=1}^{n} \left[a_{ij} 2^{n(m-i)+(n-j)} \right]$$

• Example:

$$\rho\left(\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ = 00000001101010101_{(2)} = 854.$$

Proposition 1: Let A and B be two binary matrices of the same size. Then,

$$\rho(A) = \rho(B)$$
 if and only if $A = B$.

Representation of equivalence Class

Definition 4: (HR-minimal, HC-minimal, H-minimal)

- A binary matrix A is a Hadamard-row-minimal matrix (or simply HR-minimal) if ρ(A) ≤ ρ(B) for all B which are hadamardequivalent with A
- A binary matrix A is a Hadamard-column-minimal matrix (or simply HC-minimal) if A^T is an HR-minimal
- If a matrix is both HR-minimal and HC-minimal, it is a Hadamardminimal matrix (or simply H-minimal)

HR-minimal and HC-minimal

These two matrices are hadamard-equivalent:

- Left one is HR-minimal but not HC-minimal. Note that it is column-sorted.
- An HR-minimal is not always an HC-minimal, and vice versa.
- The above shows the smallest size of the class with no Hminimal.

 Proposition 2: An HR-minimal is row-sorted, and also, column-sorted. The converse is not true in general.

Corollary 1: Two same rows of an HR-minimal must be adjacent. So must be two same columns.

• Theorem 1 (Linear Expanding Construction): Let $A = (a_{ij})$ be an $m \times n$ HR-minimal, and k and l be positive integers. Then $B = (b_{ij})$ of size $km \times ln$ is also an HR-minimal, where

$$b_{ij} = a_{\lfloor \frac{i+k-1}{k} \rfloor \lfloor \frac{j+l-1}{l} \rfloor}$$

- Proposition 3: In an HRminimal, the number of rowrepetitions of any row cannot exceed that of the all-zero-row.
- Corollary 2 (All-zero-row Adjoining Construction): We can construct an (m+1) ×n HRminimal by adjoining the allzero row at the top of an m×n HR-minimal.

Repeating any other row not necessarily preserves the HR-minimality.

• **Proposition 4:** If A is an $m \times n$ HR-minimal, then the $(m-1) \times n$ matrix obtained by deleting the bottom row of A is also an HR-minimal.

A Theorem toward Hadamard Conjecture

- **Theorem 2:** Fix a positive integer *n* and consider the set S_n of all the HR-minimals of size $n \times n$. Let $A \in S_n$. Then the following holds:
 - 1 The weight of the second row of A is upper bounded by:
 - a. 1 when n = 2,
 - b. (n-1)/2 when $n \equiv 1 \mod 2$,
 - c. (n-2)/2 when $n \equiv 2 \mod 4$ except for n = 2, and
 - d. n/2 when $n \equiv 0 \mod 4$.
 - 2 For $n \equiv 0 \mod 4$, if the matrix A which attains the upper bound above on the weight of its second row, then it must be a Hadamard matrix, and conversely for the HR-minimal of any Hadamard matrix.

Second Row of HR-minimals

If the weight is w, then the correlation of the top row (= all-zero-row) and itself becomes:

#Agreements - #Disagreements = n - 2w.

- Note that the value $| n 2w | = C_{max}$ is maximum (in absolute value) over the correlations of all possible pairs of rows of the HR-minimal.
- Therefore, the HR-minimal A with largest weight in its second row gives a set of row vectors with the lowest possible pairwise correlations.
- Definition 5 (Pseudo-Hadamard Matrix)

An $n \times n$ HR-minimal A is called as pseudo-hadamard matrix (PH matrix) of order n if the weight of its second row attains the upper bound in Theorem 2. So are all its hadamard-equivalent matrices.

Existence of PH Classes

17/27

- Note that the pseudo-hadamard matrix is a hadamard matrix when $n \equiv 0 \mod 4$.
- It is a generalized concept of hadamard matrices to the orders $n \neq 0 \mod 4$.
- The result of computer search for some small values of n is shown here. Observe that there does not exist a pseudo-hadamard matrix of order 9.

Order	Number of inequivalent PHCs
3	1
4	1
5	1
6	15
7	1
8	1
9	0
10	4718
11	1
12	1
13	1
14	> 1,000,000
15	5
16	5

Examples of PH Matrices

Coding and Crypto Lab.

18/27

Main Conjecture

Conjecture 1: There exists a pseudo-Hadamard matrix of all positive orders n except for n=9.

The truth of this conjecture for n ≡ 0 mod 4 implies and implied by the Hadamard Conjecture.

Number of Equivalence Classes

Definition 5: We denote by $N_E(m, n)$ the number of equivalence classes of binary matrices of the size $m \times n$.

Proposition 5:

- For a given size $m \times n$, the number of HR-minimals is the same as that of HC-minimals.
- $N_E(m, n) = N_E(n, m)$ for any positive integers *m* and *n*.
- Corollary 3 (of Corollary 2): $N_E(m, n)$ is monotonically nondecreasing as m and n increases.

Some Formula

21/27

Coding and Crypto Lab.

m∖n	1	2	3
1	1	1	1
2	1	2	2
3	1	2	3
4	1	3	5
5	1	3	6
6	1	4	9
7	1	4	11
8	1	5	15
9	1	5	18
10	1	6	23
11	1	6	27
12	1	7	34
13	1	7	39
14	1	8	47
15	1	8	54
16	1	9	64
17	1	9	72
18	1	10	84
19	1	10	94
20	1	11	108

Some Exhaustive Search

All the HR-minimals of small sizes

Coding and Crypto Lab.

22/27

Total Number of the Equivalence Classes

101	10000101	100	0111100100	01011001110	101001111101/	100011100010	010011011010	111011110110	001101001011	101110011001
r	n∖n		1	2	3	4	5	6	7	8
	1		1	1	1	1	1	1	1	1
	2		1	2	2	3	3	4	4	5
	3		1	2	3	5	6	9	11	15
	4		1	3	5	12	18	35	54	94
	5		1	3	6	18	39	101	228	551
	6		1	4	9	35	101	388	1343	5083
	7		1	4	11	54	228	1343	8102	53775
	8		1	5	15	94	551	5083	53775	656108
	9		1	5	18	140	1221	18366	355773	
	10		1	6	23	224	2746	66524		
	11		1	6	27	326	5850	231189		
	12		1	7	34	495	12338	780372		
	13		1	7	39	699	24994			
	14		1	8	47	1012	49708			
	15		1	8	54	1397	95771			
	16		1	9	64	1955	180759			

Coding and Crypto Lab.

Total Number of H-minimals

00000100	000110000101	000111100100	001011001110	101001111101	000011100010	<u>010011011010</u>	<u>111111111111</u>	001101001011	101110011001
	m∖n	1	2	3	4	5	6	7	8
	1	1	1	1	1	1	1	1	1
	2	1	2	2	3	3	4	4	5
	3	1	2	3	5	6	9	11	15
	4	1	3	5	12	18	34	53	90
	5	1	3	6	18	37	93	197	448
	6	1	4	9	34	93	318	968	3109
	7	1	4	11	53	197	968	4624	23518
	8	1	5	15	90	448	3109	23518	200127
	9	1	5	18	131	917	9549	118346	
	10	1	6	23	205	1913	29244		
	11	1	6	27	292	3728	85549		
	12	1	7	34	434	7285			
	13	1	7	39					
	14	1	8	47					
	15	1	8	54					
	16	1	9	64					

Various ratios of H-minimals

Size	Total No. of Eq. Classes (T)	No. of Classes containing H- minimal (H)	No. of Classes containing Symmetric H- minimal (S)	Ratio of H/T(%)	Ratio of S/T(%)	Ratio of S/H(%)
1x1	1	1	1	100	100	100
2x2	2	2	2	100	100	100
3x3	3	3	3	100	100	100
4x4	12	12	8	100	66.67	66.67
5x5	39	37	19	94.87	48.72	51.35
6x6	388	318	70	81.96	18.04	22.01
7x7	8102	4624	336	57.07	4.147	7.266
8x8	656108	200127	2675	30.50	0.4077	1.337

Is the number going to increase monotonically?

- > Will it ever touch the value 0? No, because of the all-zero matrix.
- Is the ratio going to decrease down to zero indefinitely?

- Proposition 6: If A is an HR-minimal but not HC-minimal, then the matrix obtained by adjoining the all-zero-row at the top of A is (still an HR-minimal) but not an HC-minimal either.
- Theorem 4: Every equivalence class of size $m \times n$ contains Hminimal if and only if $m \le 3$, $n \le 3$, 4×4 , 4×5 , or 5×4 .

Concluding Remarks

- We propose:
 - A new problem on the classification of binary matrices in terms of the Hadamard equivalence.
 - Canonical forms that represent the equivalence classes.
 - Properties of HR-minimals and H-minimals.
 - Definition of Pseudo-Hadamard matrix
 - We perform exhaustive search to determine the number of equivalence classes (and H-minimals, and also pseudohadamard matrix classes) of some small sizes.
 - We leave some unsolved problems. One of them is related with the Hadamard conjecture:

For n which is a multiple of 4,

the set of all the HR-minimals of size $n \times n$

contains a Hadamard matrix.

Coding and Crypto Lab.

