Recent development on M-ary sequence family construction using Sidelnikov sequences

ITA 2013 @ UCSD, San Diego Feb 10-15, 2013 Hong-Yeop Song and Dae San Kim School of EEE Dept. Math Yonsei Universtiy Sogang University

In The Beginning

(Sidelnikov-69)

Sidelnikov introduced two different types of non-binary (*M*-ary) sequences with **low** non-trivial **autocorrelation**.

- Power Residue Sequences (PRS in short) of period p
- Sidelnikov Sequences of period $m{q}-m{1}$

V. M. Sidelnikov, "Some k-valued pseudo-random sequences and nearly equidistant codes," *Probl. Inf. Transm.*, vol. 5, pp. 12-16, 1969.

(Lempel-Cohn-Eastman-77)

Re-discovered binary "Sidelnikov sequences"

- Lempel-Cohn-Eastman, "A class of binary sequences with optimal autocorrelation properties," *IEEE* Trans. *Inform. Theory*, vol. 23, No. 1, pp. 38-42, Jan. 1977.
- ✓ Sarwate, Comments on... 1978.

Power Residue Sequences of period p

- *p* = an odd prime
- β = a primitive root mod p
- M = a divisor of p 1
- Coset Partition

✓ C_0 : a set of *M*-th powers in the integers mod *p* ✓ $C_k = \beta^k \cdot C_0$ for $0 \le k \le M-1$

• An *M*-ary PRS of period p is defined as, for t = 0, 1, ..., p-1,

$$s(t) = \begin{cases} \mathbf{0}, & \text{if } \mathbf{t} = \mathbf{0} \\ k, & \text{if } t \in C_k \end{cases}$$

Sidelnikov Sequences of period q-1

• GF(q) = finite field of size q

where
$$q = p^n$$

- β = primitive element of GF(q)
- M = a divisor of q 1
- Coset Partition

 $✓ C_0 : \text{ a set of } M\text{-th powers in } GF(q)$ $✓ C_k = \beta^k · C_0 \quad \text{for } 0 \le k \le M\text{-1}$ $An M\text{-ary Sidelnikov sequence of period } q - 1 \text{ is defined} \\ as, \text{ for } t = 0, 1, 2, ..., q\text{-2}, \\ s(t) = \begin{cases} 0, & \text{if } \beta^t + 1 = 0 \\ k, & \text{if } \beta^t + 1 \in C_k \end{cases}$

Comparison

• An *M*-ary Power Residue Sequence of period *p*:

$$s(t) = \begin{cases} 0, & \text{if } t = 0 \\ k, & \text{if } t \in C_k \end{cases}$$

• An *M*-ary Sidelnikov sequence of period q - 1: $s(t) = \begin{cases} 0, & \text{if } \beta^t + 1 = 0 \\ k, & \text{if } \beta^t + 1 \in C_k \end{cases}$

(Examples) p = q = 13, M = 3, $\beta = 2$ • $C_0 = 2^0 \cdot C_0 = \{1, 5, 8, 12\} = \text{cubic residues mod } 13$ • $C_1 = 2^1 \cdot C_0 = \{2, 10, 3, 11\}$ • $C_2 = 2^2 \cdot C_0 = \{4, 7, 6, 9\}$

t	0	1	2	3	4	5	6	7	8	9	10	11	12
PRS	0	0	1	1	2	0	2	2	0	2	1	1	0
SS	1	1	0	2	2	2	0	0	1	2	1	0	

t	0	1	2	3	4	5	6	7	8	9	10	11
β^t	1	2	4	8	3	6	12	11	9	5	10	7
$\beta^t + 1$	2	3	5	9	4	7	0	12	10	6	11	8

Summary of this talk

- QUESTION: Can we construct a family of sequences with GOOD auto- & cross-correlation from these sequences?
- **Yes**, we may...
- We have an interesting development here... for both Power Residue sequences and Sidelnikov sequences... including some new results.

First Family

- (Kim-Song-Gong-Chung ISIT 06) For PRS sequences, changing the primitive element yields another PRS sequence which are cyclically distinct, and having a GOOD crosscorrelation
 - The number of distinct PRS of period *p* obtainable by changing the primitive root is given as $\phi(M)$

 \rightarrow a family!

 \rightarrow all obtainable by multiplying some constants term-by-term

- Crosscorrelation is upper bounded by $\sqrt{p}+2$
- (Kim-Song IT Trans 07) Crosscorrelation of a set which consists of an *M*-ary Sidel'nikov sequence s(t) of length q 1 and its constant multiple sequence is upper bounded by $\sqrt{q} + 3$
 - When $c \neq 1$, the resulting sequence is NOT a sidelnikov sequence in general.

Comparison and Main Problem

• For PRS sequences of period p

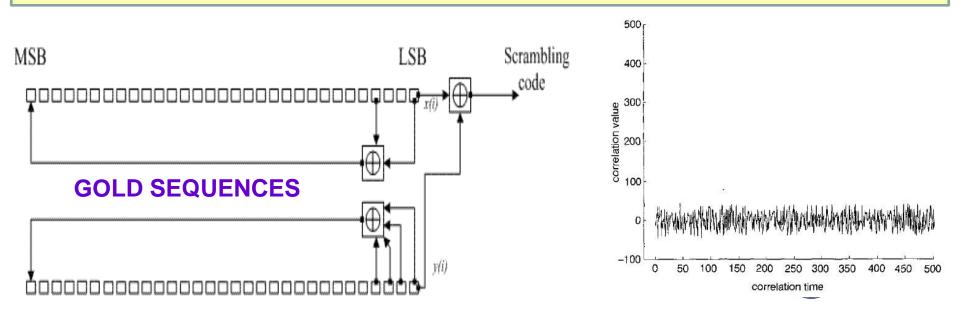
- Generating a family by using all different primitive elements
 - = taking all the distinct constant multiples of a sequence
- Forms a family with GOOD cross correlation property
- For SideInikov sequences of period q-1
 - Taking a constant multiple does NOT result in a Sidelnikov sequence
 - But still, forms a family with GOOD cross correlation property
- **PROBLEM:** The size is only $\phi(M)$ or M, which is sooo SMALL...

An improvement has started from somewhere else

- Z. Guohua and Z. Quan, "Pseudonoise codes constructed by Legendre sequence," IEE Electronic Letters, vol. 38, no. 8, pp. 376-377, 2002.
- Main Result + Conjecture:

The technique of **shift-and-add (as in the construction of GOLD sequences)** using a given **Legendre sequence (so called, quadratic residue sequence)** can construct a sequence **family with good crosscorrelation**.

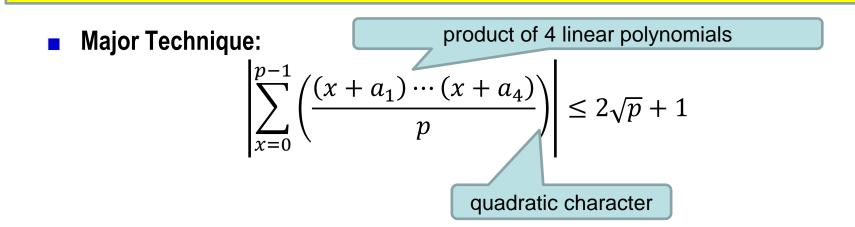
Crosscorrelation is (conjectured to be) upper bounded by $4[2\sqrt{p/4}] + 1$



It is proved by Rushanan at ISIT-06

- J. Rushanan, "Weil Sequences: A Family of Binary Sequences with Good correlation Properties," *Proc. of IEEE Int. Symp. Information Theory(ISIT2006)*, Seattle, WA, USA, July 2006.
- Main Result:

Crosscorrelation of the sequence family containing a Legendre sequence and its some shift-and-add sequences is upper bounded by $2\sqrt{p} + 5$.



What Yang and No have noticed: (1) Weil Bound on Character Sum

- Kim-Chung-<u>No</u>-Chung, IT Trans. 2008
- Han-Yang, IT Trans. 2009
 - Rushanan's major tool is a famous and well-known technique for the proof of crosscorrelation of some sequences
 - ψ = multiplicative character of $GF(q)^*$ of order M, where M|q-1:

$$\psi(x) = \exp\left(\frac{j2\pi}{M}\log_{\alpha} x\right)$$
 with $\psi(0) = 0$

(Weil-48) Let ψ be a multiplicative character of GF(q) of order M and f(x) a monic polynomial of positive degree over GF(q) that is not an Mth power of a polynomial. Let d be the number of distinct roots of f(x) in its splitting field GF(q). Then for every $c \in GF(q)^*$, we have

$$\sum_{x \in GF(q)} \psi(cf(x)) \le (d-1)\sqrt{q}$$

What Yang and No have noticed: (2) Shift-and-add sequences

Main Theorem (No-08, Yang-09)

Let s(t) be an *M*-ary Sidelnikov sequence of period q - 1, with p odd. Let $T = \lfloor (q - 1)/2 \rfloor$.

Let \mathcal{L} be the set of *M*-ary sequences of period q - 1 given as follows.

$$\mathcal{L} = \{ c_1 s(t) & | 1 \le c_1 \le M - 1 \} \\ \cup \{ c_1 s(t) + c_2 s(t+l) | 1 \le c_1, c_2 \le M - 1, 1 \le l \le T - 1 \} \\ \cup \{ c_1 s(t) + c_2 s(t+T) | 1 \le c_1 < c_2 \le M - 1 \}$$

$$\Rightarrow (1) \text{ Correlations of the family } \mathcal{L} \text{ is upper bounded by} \\ |\mathcal{C}(\tau)| \leq 3\sqrt{q} + 5 \\ (2) \text{ Family size is } \frac{(M-1)^2(q-3)}{2} + \frac{M(M-1)}{2} \end{aligned}$$

Second Improvement by Yu-Gong

- Yu-Gong IT Trans 2010: Multiplicative Characters, the Weil Bound, and Polyphase Sequence Families With Low Correlation
- Fully generalize the family from both Power Residue Sequences of period p and Sidelnikov Sequences of period q-1

	Period L	Alphabet	C_{\max}	Family size
$\mathcal{S}^{(0)}_{\mathbf{r}}$ (or $\tilde{\mathcal{F}}_{\mathbf{r}}$ [24])	p	M	$2\sqrt{L}+5$	$\left(\frac{L+1}{2}\right) \cdot (M-1)$
$\mathcal{L}_{\mathbf{r}}$ (or $\mathcal{F}_{\mathbf{r}}$ [24])	p	M	$3\sqrt{L}+4$	$M - 1 + \frac{(M-1)^2(L-1)}{2}$
$\mathcal{G}_{\mathbf{r}}^{(\delta,2)}, \delta \neq 0$ (in this paper)	p	M	$4\sqrt{L}+7$	$ \begin{pmatrix} (M-1) + \left(\frac{L-1}{2}\right)(M-1)^2 \\ + \frac{(L-1)(L-3)}{8} \cdot (M^2 - 3M + 3) \end{pmatrix} $
$\mathcal{H}_{\mathbf{r}}^{(2)}$ (in this paper)	p	М	$5\sqrt{L}+6$	$ \begin{pmatrix} (M-1) + \left(\frac{L-1}{2}\right)(M-1)^2 \\ + \frac{(L-1)(L-3)}{8} \cdot (M-1)^3 \end{pmatrix} $
$\mathcal{S}^{(0)}_{\mathbf{s}}$ (or $\tilde{\mathcal{F}}_{\mathbf{s}}$ [24])	$p^m - 1$	M	$2\sqrt{L+1} + 6$	$(M-1)\cdot \left(\frac{L}{2}\right) + \left\lfloor \frac{M-1}{2} \right\rfloor$
L _s (or <i>L</i> [23])	p^m-1	M	$3\sqrt{L+1} + 5$	$\frac{(M-1)^2(L-2)}{2} + \frac{M(M-1)}{2}$
$\mathcal{G}_{\mathbf{s}}^{(\delta,2)}, \delta \neq 0$ (in this paper)	$p^m - 1$	M	$4\sqrt{L+1} + 8$	$ \begin{pmatrix} (M-1) + \left(\frac{L-2}{2}\right)(M-1)^2 \\ + \frac{(L-2)(L-4)}{8} \cdot (M^2 - 3M + 3) \end{pmatrix} $
$\mathcal{H}_{s}^{(2)}$ (in this paper)	$p^m - 1$	М	$5\sqrt{L+1} + 7$	$ \begin{array}{c} (M-1) + \left(\frac{L-2}{2}\right) (M-1)^2 \\ + \frac{(L-2)(L-4)}{8} \cdot (M-1)^3 \end{array} $

COMPARISON OF WELL-KNOWN POLYPHASE SEQUENCE FAMILIES (p IS AN ODD PRIME)

New Direction by Yu-Gong

Yu-Gong – IT Trans 2010: New Construction of M-ary Sequence Families With Low Correlation From the Structure of Sidelnikov Sequences

- Only for family from Sidelnikove sequences of period q-1
- Introduced ARRAY STRUCTURES of a longer Sidelnikov sequence of period q² -1 by listing it as an array of size (q-1) x (q+1)
- Now, the family consists of some of its column sequences, their constant multiples, and their shift-and-add sequences.
- They generalize the Weil Bound for the computation of the crosscorrelation.

- Use $\psi(0) = 1$ from now on.
- (Refined Weil bound by Yu-Gong-10)
 - Let $f_1(x), \ldots, f_l(x)$ be l monic and irreducible polynomial over GF(q) which have positive degrees d_1, \ldots, d_l , respectively. Let d be the number of distinct roots of $f(x) = \prod_{i=1}^l f_i(x)$ in its splitting field over \mathbb{F}_q . Let e_i be the number of distinct roots in \mathbb{F}_q of $f_i(x)$.
 - Let ψ_1, \dots, ψ_l be multiplicative characters of \mathbb{F}_q . Assume that the product character $\prod_{i=1}^l \psi_i(f_i(x))$ is nontrivial.
 - If $\psi_i(0) = 1$, then, for every $a_i \in \mathbb{F}_q \setminus \{0\}$,

$$\left|\sum_{x\in\mathbb{F}_q}\psi_1(a_1f_1(x))\cdots\psi_l(a_lf_l(x))\right|\leq (d-1)\sqrt{q}+\sum_{i=1}^l e_i\,.$$

Sidelnikov Sequences (again)

- p = prime, and $q = p^n = prime$ power with a positive integer n
- *M* is a divisor of q-1
- GF(q) = finite field of order q
- β = primitive element of GF(q)
- $D_k = \{\beta^{Mi+k} 1 | 0 \le i < \frac{q-1}{M}\}$ for $0 \le k \le M 1$.
- The *M*-ary Sidelnikov sequence of period q 1 is defined by

$$s(t) = \begin{cases} 0, & \text{if } \beta^t = -1 \\ k, & \text{if } \beta^t \in D_k \end{cases}$$

(Yu-Gong-10) Equivalently,
$$s(t)$$
 is defined by
 $s(t) \equiv \log_{\beta}(\beta^{t} + 1) \pmod{M}, \ 0 \le t \le q - 2$

$s(t) \equiv \log_{\beta}(\beta^t + 1) \pmod{M}$

Is this the ADDONE table (Zech Log) of finite field?

• Consider the case q = 13 with a primitive element $\beta = 2$

t	β^t	$\beta^t + 1$	$log_{\beta} (\beta^t + 1) \pmod{12}$	(mod 3)
*	0	1	0	0
0	1	2	1	1
1	$\beta = 2$	3	4	1
2	$\beta^2 = 4$	5	9	0
3	$\beta^3 = 8$	9	8	2
4	$\beta^4 = 16 = 3$	4	2	2
5	$\beta^5 = 6$	7	11	2
6	$\beta^{6} = 12$	0	0	0
7	11	12	6	0
8	9	10	10	1
9	5	6	5	2
10	10	11	7	0
11	7	8	3	0

18

Array structure of Sidelnikov sequences

■ (Yu-Gong-10)

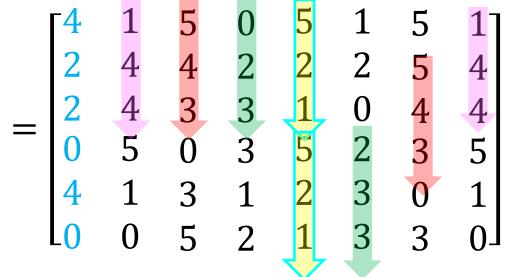
Write a sidelnikov sequence of period $q^2 - 1$ as an array of size $(q - 1) \times (q + 1)$.

- 1) the first column sequence is always a multiple of a Sidelnikov sequence of period q 1.
- 2) other column sequences (not necessarily a sidelnikov sequence) have GOOD correlations.
- They used cyclically distinct column sequences in the array to construct a new family, with the set size comparable to those in (No-08, Yang-09).
- The construction is still a combination of adopting constant multiples and shiftand-add sequences of a sidelnikov sequence of period q - 1 in addition to column sequences and their constant multiples from the array structure of a sidelnikov sequence of period $q^2 - 1$.

Example (Yu-Gong-10)

■ Let q = 7, M = 6. A 6-ary Sidelnikov sequence s(t) of period $q^2 - 1 = 48$ is represented by 6×8 array as follows:

$$\mathbf{s(t)} = [v_0(t), v_1(t), v_2(t), v_3(t), v_4(t), v_5(t), v_6(t), v_7(t)]$$



• $v_l(t) = s((q+1)t+l)$ for $0 \le t \le q-2$ and each l = 0,1,2,...,q.

> $v_0(t) = 2s'(t)$, where s'(t) = (2,4,1,0,5,3) is a 6-ary Sidelnikov sequence of period 6.

▶
$$v_l(t) = v_{q+1-l}(t+1-l)$$
 for $0 \le t \le q-2$ and each $l = 1, 2, ..., q$.

Theorem (Yu-Gong-10)

Column sequences $v_l(t)$ of the array can be represented as $v_l(t) = \log_{\beta} V_l(\beta^t)$ where $V_l(x) = \beta^l x^2 + T r_a^{q^2} (\alpha^l) x + 1$.

Theorem (Yu-Gong-10)

Let \mathcal{U} be the set of sequences of period q - 1 given as follows: $\begin{aligned} \mathcal{U} &= \{cs(t) | 1 \leq c \leq M - 1\} \\ &\cup \left\{ c_0 s(t) + c_1 s(t + l_1) \middle| 1 \leq l_1 \leq \Bigl| \frac{q - 1}{2} \Bigr| \right\} \\ &\cup \left\{ c_2 v_{l_2}(t) \middle| 1 \leq l_2 \leq \lfloor q/2 \rfloor \right\} \end{aligned}$ (1) The maximum correlation of \mathcal{U} is upper bounded by $3\sqrt{q} + 5$. (2) This family have size $\frac{M(M-1)(q-2)}{2} + M - 1$.

Recently (2010-current) by Kim-Song

- D.S. Kim, 2010: A family of sequences with large size and good correlation property arising from *M*-ary Sidelnikov sequences of period q^d-1, <u>arXiv:1009.1225v1</u> [cs.IT]
 - Why not considering a sidelnikov sequence of period $q^3 1$, $q^4 1$ or $q^k 1$ in general in the first place and then using an array of size $(q 1) \times (\frac{q^{k-1}}{q-1})$?

Generalization of the Array Structure

Theorem

Let $k \ge 2$, and write a Sidelnikove sequence of length $q^k - 1$ as an array of size $(q - 1) \times (\frac{q^{k-1}}{q-1})$.

Then, the column sequences $v_l(t)$ of the array can be represented as

$$v_l(t) = \log_\beta f_l(\beta^t) \pmod{M}$$

where

$$f_l(x) = N(\alpha^l x + 1).$$

Main result

Assume that
$$(k, q - 1) = 1$$
, $k < \frac{\sqrt{q} - \frac{2}{\sqrt{q}} + 1}{2}$.

Construct a family

 $\boldsymbol{\Sigma} = \{ c \boldsymbol{v}_{l}(t) \mid 1 \leq c < M \text{ and } l \in \Lambda \setminus \{0\} \}$

where Λ is the set of all the representatives from each q-cyclotomic coset mod $\frac{q^{k-1}}{q-1}$.

Then

$$|C_{max}(\Sigma)| \le (2k-1)\sqrt{q}+1.$$

2 The asymptotic size of the family is $\frac{(M-1)q^{k-1}}{k}$ as $q \to \infty$.

Example

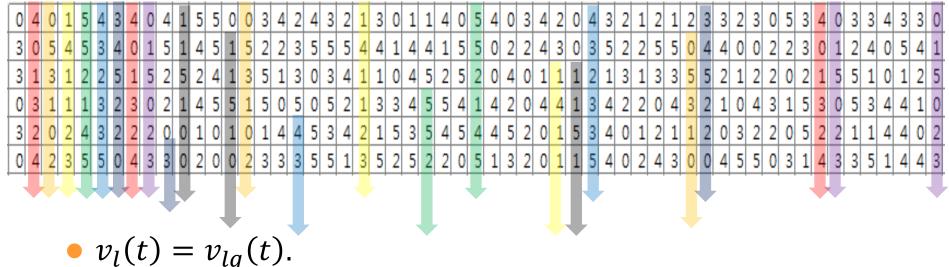
Let q = 7, M = 6, k = 3. Consider finite field GF(343).

Then 6-ary Sidelnikov sequence s(t) of period 342 is

represented by the 6×57 array as follows:

 $s(t) = [v_0(t), v_1(t), \cdots, v_{55}(t), v_{56}(t)]$

012345678901234567890123456789012345678901234567890123456



• If $l_1 \equiv l_2 \mod \frac{q^{k-1}}{q-1}$, then $v_{l_1}(t)$ and $v_{l_2}(t)$ are cyclically equivalent.

• Roughly, $k < \frac{\sqrt{q}}{2}$.

Size of some column sequence families

q	$7^2 = 49$	$11^2 = 121$	$13^2 = 169$	$3^5 = 243$	2 ⁸ = 256	$17^2 = 289$	$7^3 = 343$
<i>k</i> = 2	24	60	84	121	128	144	171
Asymp.	24	60	84	121	128	144	171
<i>k</i> = 3	816	4921	9577	19764	21931	27937	39331
Asymp.	800	4880	9520	19683	21845	27840	39216
k = 4	Х	446581	1213885	3602050	4210752	6055345	10117900
Asymp.	Х	442890	1206702	3587226	4194304	6034392	10088401

In all the values of the table, the constant factor M - 1 = 5 is omitted.

Comparison of the Families so far

• The following *M*-ary sequence families have period q - 1:

Family	Size	C _{max}	Remark
Song-07	M – 1	$\sqrt{q} + 3$	Constant multiples
		$\sqrt{q+3}$	Constant multiples
Yang-09, No-08	$\frac{(q-3)}{2}(M-1)^2 + \frac{M(M-1)}{2}$	$3\sqrt{q} + 5$	+ Shift-and-add
Yu-Gong-10 (1)	$\frac{(q-3)(q-5)}{8}(M-1)^3 + \cdots$	$5\sqrt{q} + 7$	+ more Shift-and-add
Yu-Gong-10 (2)	$\frac{(q-2)}{2}M(M-1) + M - 1$	$3\sqrt{q} + 5$	+ array structure
Kim-10	$\frac{q^{k-1}}{k}(M-1)$ as q approached ∞	$(2k - 1)\sqrt{q} + 1$	Generalization of array

Still More to Come: Decimation Sequences

• **Definition:** Let a(t) be a sequence of period *L*. Then *d*-decimation sequence b(t) of a(t) is

b(t) = a(dt), for t = 0, 1,

- Can we add some decimations of the members (either sidelnikov sequence or column sequences of the array sturcture) without increasing the max correlation (around $3\sqrt{q} + 5$)?
 - Yes, we may....
 - will be coming soon ^.^

