Properties and Crosscorrelation of Decimated Sidelnikov Sequences

IWSDA 2013 Oct. 27 – Nov. 1

Young-Tae Kim, Ki-Hyeon Park, **Hong-Yeop Song** Yonsei University

00100010110011101010011

and Dae San Kim
Sogang University

Introduction

Sidelnikov sequence: *M*-ary sequence of period q - 1

- Will use all the notations from the previous presentation
- Decimation is a well-known method for constructing new sequences from the given sequence.

Goal

- Properties of decimations of a Sidelnikov sequence
- Find the maximal correlation magnitude between two decimations

Decimation and Constant multiple

Definition

(1) b(t) = a(dt) for t = 0, 1, ... is called the *d*-decimation of a(t)

(2) $c(t) = d \cdot a(t)$ for t = 0, 1, ... is called the *d*-multiple of a(t)

REMARK

Let a(t) be an *M*-ary sequence of period *L*.

• Period of *d*-decimation of a(t) becomes $\frac{L}{\gcd(d,L)}$.

✓ Must choose *d* with (d, L) = 1

• Alphabet size of d-multiple of a(t) becomes $\frac{M}{\gcd(d,M)}$.

✓ Must choose *d* with (d, M) = 1

Changing the primitive element

Theorem 1 No-09

- Let $q = p^m$ and $gcd(\delta, q 1) = 1$.
- $s(t) \equiv \log_{\beta}(\beta^{t} + 1) \mod M$, β is primitive in GF(q).
- $s'(t) \equiv \log_{\gamma}(\gamma^t + 1) \mod M$, γ is primitive in GF(q).
- Then, $s(\delta t) \equiv \delta \cdot s'(t) \mod M$ if and only if $\gamma = \beta^{\delta}$.
- Example ($q = 11, M = 10, \beta = 2, \gamma = 8, \delta = 3$)

When $d = p^l$ is prime power

Corollary 1

- If $d = p^l$ for $l \ge 0$, then s(dt) = ds(t) for all t.
- its converse is also true and the proof is not at all trivial.

Theorem 2 (Converse of above)

- Let $q = p^m$, s(t) be a Sidelnikov sequence of period q 1.
- If for some d we have s(dt) = ds(t) for all t, then $d = p^{l}$ for some l.

Correlation between two decimations

- Let s(t) be an M-ary Sidelnikov sequence of period q 1.
- Assume that d, d' are relatively prime to q 1.
- Goal: find the max correlation between $c_1s(dt)$ and $c_2s(d't)$.
- If p divides d, i.e. $d = p^l q$ with (d,q) = 1, then we can replace $s(dt) = s(p^l qt)$ with $p^l s(qt)$ by Corollary 1.
- If $d = p^l$ and $d' = p^{l'}$ then $s(dt) = s(p^l t) = p^l s(t)$ and $s(d't) = s(p^{l'}t) = p^{l'}s(t)$.
 - Correlation between two distinct multiples of a Sidelnikov sequence.
 - This case has been studied by Song-07, No-09, Gong-10.

• Enough to consider the case where p divides neither d nor d'.

Correlation between two decimations

Theorem 3

- Let s(t) be an M-ary Sidelnikov sequence of period q 1.
- Assume that d, d' are relatively prime to q 1.
- Let $a(t) = c_1 s(dt)$, $b(t) = c_2 s(d't)$ be cyclically inequivalent.
- Then we have

$$|\max_{\tau} \{ C_{a,b}(\tau) \} | \le (d+d'-1)\sqrt{q} + 3$$

where τ runs over the integers $0 \le \tau \le q - 2$.

When d' = 1

Corollary 2

- Assume that (d, q 1) = 1 and p does not divide d.
- Let s(t) be a Sidelnikov sequence of period q 1.
- Let b(t) = s(dt) and a(t) = s(t).
- Then we have

$$|\max_{\tau} \{C_{a,b}(\tau)\}| \le d\sqrt{q} + 3$$

where τ runs over the integers $0 \le \tau \le q - 2$.

Example : Correlation function

- Correlation of the Sidelnikov sequence of period $3^5 - 1 = 242$ and its 5-decimation.
- Red line indicates the correlation bound which is about 81.
- True max is about 42, showing some gap.

Example : Correlation bound

q	d	M	Max	Bound $(= d\sqrt{q} + 3)$
64	5	7	17.62	43.00
243	3	11	17.95	49.76
	5	11	41.78	80.94
256	7	15	40.26	115.00
289	5	8	45.12	88.00
	7	8	35.52	122.00
343	5	9	42.23	95.60
	7	9	21.00	132.64
512	5	7	50.80	68.88
1024	5	3	72.06	
		11	87.14	
		31	97.39	163.00
		33	106.24	
		93	86.23	
		341	86.15	
		1023	91.48	

This table shows the exact maximal correlation magnitude between s(t) and s(dt) and the correlation bound for given q, d, m.

Conclusion

Apply the decimation to Sidelnikov sequences.

Main result 1

- Deriving a relation between decimations and primitive elements. (known earlier by others)
- *d*-decimation is equal to *d*-multiple if and only if $d = p^{l}$ for some $l \ge 0$.

Main result 2

• The max correlation between two decimations is dependent on the sum of two decimation factors.

Thanks for your attention...

Any questions?