Some Properties of 2-Dimensional Array Structure of Sidelnikov Sequences of Period q^d – 1

IWSDA 2013 Oct. 27 – Nov. 1

Young-Tae Kim, Hong-Yeop Song Yonsei University

and Dae San Kim
Sogang University

Correlations and Sequence Families

Let a(t) and b(t) be M-ary sequences of period L. A (periodic) correlation of sequences a(t) and b(t) is defined by

$$C_{a,b}(\tau) = \sum_{t=0}^{L-1} \omega_M^{a(t)-b(t+\tau)}.$$

For a sequence set S, $C_{max}(S)$ denotes the maximum magnitude of all the nontrivial correlations of pairs of sequences in S.

Motivation

- Synchronization, Distinguishing users, Interference minimization, Higher resolution RADAR,...
- 1969 Sidelnikov (autocorrelation property only)
- 2007~Present Sequence families from Sidelnikov sequences

Purpose

- Sequence families with large size
- Sequence families with low correlation magnitude

Brief History and Main Contribution

(SONG-07) Sequence family constructions from Sidelnikov sequences have been considered, by using constant multiples

(NO-08, YANG-09) Family size increased by additionally using shiftand-adds

(GONG-10) 2-D array structure of size $(q-1) \times \left(\frac{q^2-1}{q-1}\right)$

(KIM-10) 2-D array structure of size $(q-1) \times \left(\frac{q^{d}-1}{q-1}\right)$ with (d, q-1) = 1

(This paper) 2-D array structure of size $(q - 1) \times \left(\frac{q^d - 1}{q - 1}\right)$ without (d, q - 1) = 1

> maintaining the family size "comparable" to the above and the correlation bound the same as the above

Notation

- p:prime
- $q = p^n$: prime power or prime
- GF(q) : finite field of order q
- GF(q^d): finite field of order q^d with $2 \le d < (\sqrt{q} \frac{2}{\sqrt{q}} + 1)/2$
- α : arbitrary but fixed primitive element of GF(q^d)
- $\beta = \alpha^{(q^d-1)/(q-1)}$: the primitive element of GF(q)
- ω_M : complex Mth root of unity, where M|q 1
- ψ : the multiplicative character of order M from GF(q), defined by

$$\begin{split} \psi(x) &= \exp(\frac{2\pi i}{M} \log_{\beta} x) = \omega_{M}^{\log_{\beta} x} \\ & \text{and} \\ \psi(0) &= 1. \end{split}$$

Sidelnikov Sequences of period q-1

- GF(q) = finite field of size q where $q = p^n$
- β = primitive element of GF(q)
- M = a divisor of q 1
- Coset Partition
 - \checkmark D₀: the set of M-th powers in GF(q)*

$$\checkmark D_k = \beta^k \cdot D_0 \text{ for } 0 \le k \le M-1$$

An M-ary Sidelnikov sequence of period q – 1 is defined as, for t = 0, 1, 2,..., q-2,

$$s(t) = \begin{cases} \mathbf{0}, & \text{if } \boldsymbol{\beta}^{t} + \mathbf{1} = \mathbf{0} \\ k, & \text{if } \boldsymbol{\beta}^{t} + \mathbf{1} \in D_{k} \end{cases}$$

Sidelnikov-69

(Example) p = q = 13, M = 3, $\beta = 2$

• $D_0 = 2^0 \cdot D_0 = \{1, 5, 8, 12\} =$ cubic residues mod 13

•
$$D_1 = 2^1 \cdot D_0 = \{2, 10, 3, 11\}$$

• $D_2 = 2^2 \cdot D_0 = \{4,7,6,9\}$

t	0	1	2	3	4	5	6	7	8	9	10	11
$\beta^t = 2^t$	1	2	4	8	3	6	12	11	9	5	10	7
β ^t +1	2	3	5	9	4	7	0	12	10	6	11	8
belongs to	D_1	D ₁					?		D ₁		D ₁	
S(t)	1	1	0	2	2	2	0	0	1	2	1	0

$s(t) \equiv log_{\beta}(\beta^t + 1) \pmod{12}$

Is this ADDONE table of the finite field GF(13)?

t	β^t	$\beta^t + 1$	$\log_{\beta} (\beta^t + 1) \pmod{12}$	(mod 3)	
*	0	1	0	0	
0	1	2	1	1	
1	$\beta = 2$	3	4	1	
2	$\beta^2 = 4$	5	9	0	
3	$\beta^3 = 8$	9	8	2	
4	$\beta^4 = 16 = 3$	4	2	2	
5	$\beta^5 = 6$	7	11	2	
6	$\beta^{6} = 12$	0			
7	11	12	6	0	
8	9	10	10	1	
9	5	6	5	2	
10	10	11	7	0	
11	7	8	3	0	

Sidelnikov Sequences (alternative definition)

The M-ary Sidelnikov sequence s(t) of period q-1 is defined by, for $0 \leq t \leq q-2$,

Gong-2010

 $s(t) \equiv \log_{\beta}(\beta^{t} + 1) \mod M$,

where we assume that $\log_{\beta}(0) = 0$.

2-D array structure of size $(q - 1) \times \left(\frac{q^2 - 1}{q - 1}\right)$ Gong-10

Write a **Sidelnikov sequence of period** $q^2 - 1$ as an array of size $(q - 1) \times (q + 1)$.

- the first column sequence is always a constant-multiple of a Sidelnikov sequence of period q − 1.
- other column sequences of period q 1 (not necessarily Sidelnikov sequences) have GOOD correlations
 - NOT ONLY with each other
 - BUT ALSO with previously constructed family members of period q 1

if they are not cyclically equivalent to each other.

\rightarrow Nontrivial increase in the family size

Theorem (Gong-10)

Let \mathcal{U} be the set of sequences of period q-1 given as follows:

$$\begin{aligned} \mathcal{U} &= \{ cs(t) | 1 \leq c \leq M - 1 \} \\ &\cup \left\{ c_0 s(t) + c_1 s(t + l_1) \middle| 1 \leq l_1 \leq \left\lfloor \frac{q - 1}{2} \right\rfloor \right\} \\ &\cup \left\{ c_2 v_{l_2}(t) \middle| 1 \leq l_2 \leq \left\lfloor \frac{q}{2} \right\rfloor \right\}. \end{aligned}$$

Then,

- 1 The maximum correlation of \mathcal{U} is upper bounded by $3\sqrt{q} + 5$.
- 2 This family have size $\frac{M(M-1)(q-2)}{2} + M 1$.

If $v_l(t)$ is the column sequence of the (q-1) x (q+1) array of a Sidelnikov sequence of period $\mathbf{q}^2 - \mathbf{1}$ given by $\log_{\alpha}(\alpha^t + 1) \mod M$, Then s(t) must be the Sidelnikov sequence of period $\mathbf{q} - \mathbf{1}$ given by $\log_{\beta}(\beta^t + 1) \mod M$ where $\beta = \alpha^{(q^2-1)/(q-1)} = \alpha^{q+1}$.

Kim's Generalization

D.S. Kim, 2010: A family of sequences with large size and good correlation property arising from M-ary Sidelnikov sequences of period q^d-1, <u>arXiv:1009.1225v1</u> [cs.IT]

• Why not considering a sidelnikov sequence of period $q^3 - 1$, $q^4 - 1$ or $q^d - 1$ in general in the first place and then using **an array of size** $(\mathbf{q} - \mathbf{1}) \times (\frac{\mathbf{q}^d - \mathbf{1}}{\mathbf{q} - \mathbf{1}})$?

Key Observation – Theorem and remark

- To analyze the column sequences of the array, one has to represent the Sidelnikov sequence of period q^d – 1 using a primitive element of GF(q).
- THEOREM:

Let α be a primitive element of $GF(q^d)$.

 $\beta = \alpha^{(q^d-1)/(q-1)}$: the primitive element of GF(q)

For period $q^d - 1$, we have

 $s(t) \equiv \log_{\beta} N(\alpha^{t} + 1) \mod M.$

• REMARK: when d = 2, it becomes that

$$N(\alpha^{t}+1) = (\alpha^{t}+1)^{\frac{q^{2}-1}{q-1}} = (\alpha^{t}+1)^{q+1} = (\alpha^{t}+1)^{q}(\alpha^{t}+1)$$
$$= \alpha^{(q+1)t} + \alpha^{qt} + \alpha^{t} + 1 = \beta^{t} + 1 + Tr(\alpha^{t})$$

Key Observation - proof

- Let α be a primitive element of $GF(q^d)$.
- For period $q^d 1$, denote $y(t) \equiv \log_{\alpha}(\alpha^t + 1) \mod q^d 1$.
- Assume that $N(\alpha^t + 1) \neq 0$. Then $N(\alpha^t + 1) = \beta^{x(t)}$.
- This gives:

$$\begin{aligned} \frac{q^{d}-1}{q-1}y(t) &\equiv \frac{q^{d}-1}{q-1}\log_{\alpha}(\alpha^{t}+1) \equiv \log_{\alpha}(\alpha^{t}+1)^{\frac{q^{d}-1}{q-1}} \\ &\equiv \log_{\alpha}N(\alpha^{t}+1) \equiv \log_{\alpha}\beta^{x(t)} \equiv \log_{\alpha}\alpha^{\frac{q^{d}-1}{q-1}x(t)} \\ &\equiv \frac{q^{d}-1}{q-1}x(t) \mod q^{d}-1 \end{aligned}$$

$$\begin{aligned} &\text{Since } \left(\frac{q^{d}-1}{q-1}, q^{d}-1\right) = \frac{q^{d}-1}{q-1}, \text{ we have:} \\ &x(t) \equiv y(t) \equiv \log_{\beta}N(\alpha^{t}+1) \mod q-1 \text{ (and hence, mod M)}. \end{aligned}$$

Columns of the Array Structure Kim-10

Let $d \ge 2$, and write a Sidelnikov sequence of period $q^d - 1$ as an array of size $(q - 1) \times (\frac{q^{d-1}}{q-1})$. Then, the column sequences $v_l(t)$ of the array can be represented as $v_l(t) \equiv \log_{\beta} f_l(\beta^t) \pmod{M}$ where $f_l(x) = N(\alpha^l x + 1)$.

$$\mathbf{v}_{l}(t) \equiv \mathbf{s}\left(\frac{\mathbf{q}^{d}-1}{\mathbf{q}-1}t+l\right) \equiv \log_{\beta} \mathbf{N}(\alpha^{\frac{\mathbf{q}^{d}-1}{\mathbf{q}-1}t+l}+1) \equiv \log_{\beta} \mathbf{N}(\alpha^{l}\beta^{t}+1)$$

Cyclic Equivalence of Columns Kim-10

Let $d \ge 2$, and write a Sidelnikov sequence of period $q^d - 1$ as an array of size $(q - 1) \times (\frac{q^{d-1}}{q-1})$. The column sequences are denoted by $v_l(t)$ for $l = 0, 1, 2, ..., \frac{q^{d-1}}{q-1} - 1$.

Then,

(1) For l = 0, $v_0(t) \equiv d \log_{\beta}(\beta^t + 1) \mod M$ (2) For $l \neq 0$, $v_l(t) \equiv v_{lq}(t) \mod M$ where lq is computed mod $\frac{q^d - 1}{q - 1}$

Family of Column Sequences

Kim-10

Assume that
$$(d, q - 1) = 1$$
, $d < \frac{\sqrt{q} - \frac{2}{\sqrt{q}} + 1}{2}$.

Construct a family

 $\Sigma = \{ cv_l(t) \mid 1 \le c < M \text{ and } l \in \Lambda \setminus \{0\} \}$

where Λ is the set of all the representatives

of q-cyclotomic cosets mod
$$\frac{q^d-1}{q-1}$$
.

Then

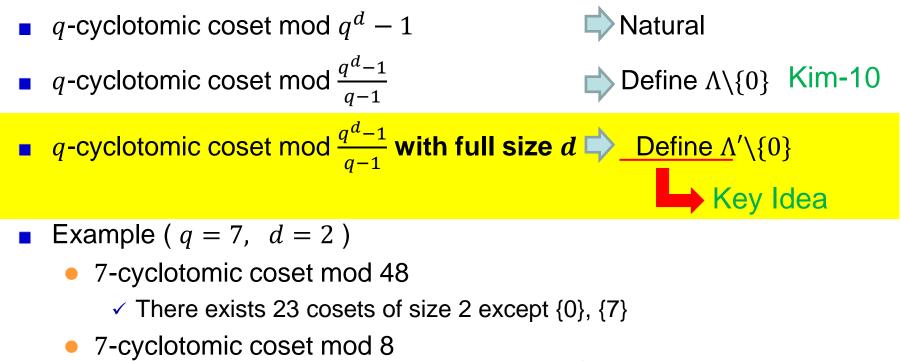
1
$$|C_{max}(\Sigma)| \leq (2d-1)\sqrt{q}+1.$$

2 The asymptotic size of the family is $\frac{(M-1)q^{d-1}}{d}$ as $q \to \infty$.

Importance of gcd(d, q - 1)

q	gcd(q – 1,3)	gcd(q – 1,4)	q	gcd(q – 1,3)	gcd(q - 1, 4)
31	3	X	61	3	4
37	3	X	64	3	1
41	1	X	67	3	2
43	3	X	71	1	2
47	1	X	73	3	4
49	3	X	79	3	2
53	1	4	81	1	4
59	1	2	83	1	2

Can we remove the condition (d,q-1)=1?



✓ {0}, {1,7}, {2,6}, {3,5}, {4}

- $\Rightarrow \Lambda \setminus \{0\} = \{1, 2, 3, 4\}$
- 7-cyclotomic coset mod 8 of size d(=2)
 - ✓ {1,7}, {2,6}, {3,5}

MAIN THEOREM

For $2 \le d < \frac{\sqrt{q} - \frac{2}{\sqrt{q}} + 1}{2}$, the sequences in the family $\Sigma' = \{cv_l(t) | 1 \le c < M, l \in \Lambda' \setminus \{0\}\}$

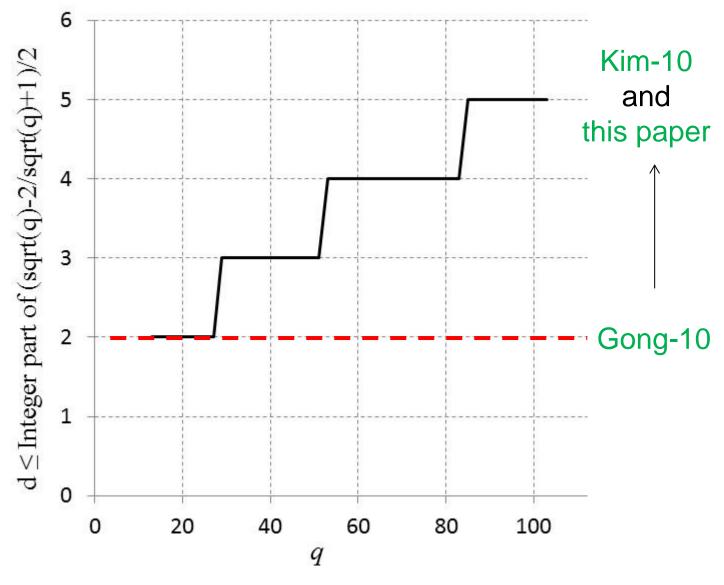
are cyclically inequivalent.

Further, we have $|C_{max}(\Sigma')| \leq (2d-1)\sqrt{q} + 1$,

and

$$(M-1)|\Lambda'| = |\Sigma'| \cong |\Sigma| = (M-1)|\Lambda|$$

Range of d



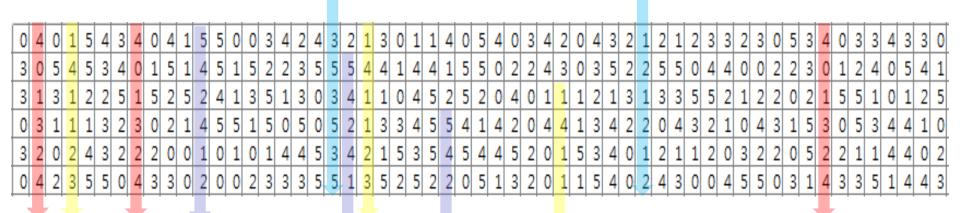
21

Example for case $(q - 1, d) \neq 1$

Let q = 7, M = 6, d = 3. Consider finite field GF(343).

Then 6-ary Sidelnikov sequence s(t) of period 48 is represented by 6×57 array as follows:

 $s(t) = [v_0(t), v_1(t), \cdots, v_{55}(t), v_{56}(t)]$



- $\boldsymbol{v}_l(t) = \boldsymbol{v}_{lq}(t).$
- In above figure, $v_{19}(t)$ and $v_{38}(t)$ are sequences of period 2.
- In general, we can not use all the representatives since $(q-1,d) \neq 1$.

Proof of Main Theorem

Suppose that $c_1 v_{l_1}(t) = c_2 v_{l_2}(t + \tau)$ for some τ ($o \le \tau < q - 1$). Then,

$$q - 1 = \sum_{t=0}^{q-2} \omega_{M}^{c_{1}v_{l_{1}(t)} - c_{2}v_{l_{2}}(t+\tau)} = \sum_{t=0}^{q-2} \psi^{c_{1}}(f_{l_{1}}(\beta^{t}))\psi^{M-c_{2}}(f_{l_{2}}(\beta^{t+\tau}))$$

$$= \sum_{x \in GF(q)} \psi_{1}(\beta^{l_{1}}p_{l_{1}}(x))\psi_{2}(\beta^{l_{2}} \cdot \beta^{\tau d} \cdot \beta^{-\tau d}p_{l_{2}}(\beta^{\tau}x)) - 1$$
where $\psi_{1} = \psi^{c_{1}}$ and $\psi_{2} = \psi^{M-c_{2}}$ and $p_{l}(x) = \beta^{-l}f_{l}(x)$.
Claim
$$\sum_{e \in GF(q)} \psi_{1}(\beta^{l_{1}}p_{l_{1}}(x))\psi_{2}(\beta^{l_{2}} \cdot \beta^{\tau d} \cdot \beta^{-\tau d}p_{l_{2}}(\beta^{\tau}x)) \begin{vmatrix} ? \\ \leq (2d-1)\sqrt{q} \end{vmatrix}$$

If the above claim is true, then $q - 1 \leq (2d - 1)\sqrt{q} + 1$.

X

This is impossible because of our assumption $d < (\sqrt{q} - \frac{\sqrt{q}}{2} + 1)/2$.

Weil bound

Wan-97/Gong-10/Kim-10

Let $f_1(x), ..., f_m(x)$ be **distinct monic irreducible** polynomial over GF(q) with degrees $d_1, ..., d_m$, with e_j the **number of distinct roots** in GF(q) of $f_j(x)$.

Let $\psi_1, ..., \psi_m$ be **nontrivial multiplicative characters** of GF(q), with $\psi_j(0) = 1$.

Then for every $a_i \in \mathbb{F}_q \setminus \{0\}$, we have the estimate

$$\left|\sum_{x\in \mathbb{F}_q}\psi_1(a_1f_1(x))\cdots\psi_m(a_mf_m(x))\right|\leq \left(\sum_{i=1}^m d_i-1\right)\sqrt{q}+\sum_{i=1}^m e_i\,.$$

For the proof of claim, we have to show that the following statement is true:

Let *l*₁, *l*₂ be elements in Λ'\{0}, and let τ(0 ≤ τ < q − 1) be an integer. Then *p*_{*l*₁}(*x*) and β^{-τd}*p*_{*l*₂}(β^τ*x*) are distinct irreducible polynomials over *GF*(*q*), unless *l*₁ = *l*₂ and τ = 0.

Note that $p_l(x)$ is alternative form of $f_l(x) = N(\alpha^l x + 1)$.

For each
$$l\left(0 \le l < \frac{q^{d-1}}{q^{-1}}\right)$$
,

$$f_l(x) = \beta^l N(x + \alpha^{-l})$$

$$= \beta^l (x + \alpha^{-l})(x + \alpha^{-lq}) \cdots (x + \alpha^{-lq^{d-1}})$$

$$= \beta^l p_l(x)^{d/d_l}$$

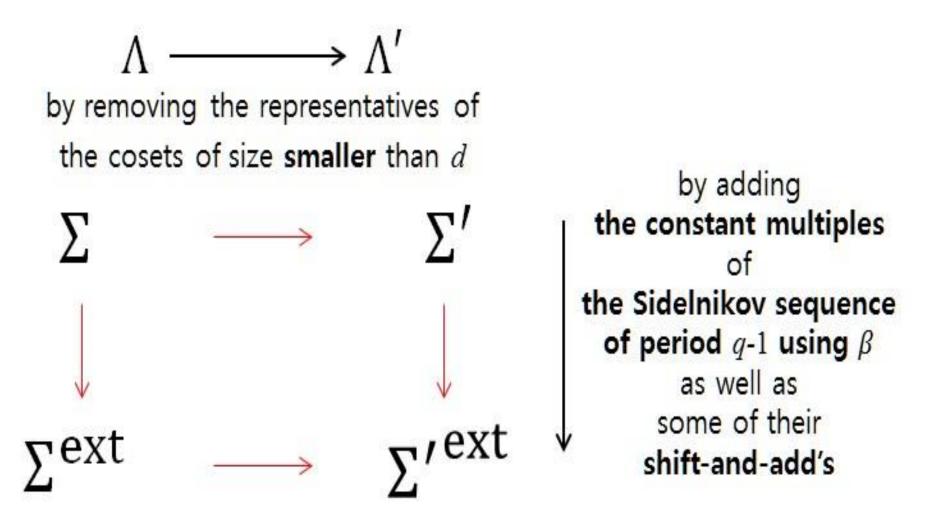
where $p_l(x)$ is the minimal polynomial over GF(q) of $-\alpha^{-l}$ of degree d_l . And if $l \in \Lambda'$, then $d = d_l = m_l$. So, $f_l(x) = \beta^l p_l(x)$.

Proof of the statement

Assume that they are the same.

 $\beta^{-\tau d} p_{l_2}(\beta^{\tau} x) =$ $(x + \alpha^{-l_2}\beta^{-\tau})(x + \alpha^{-l_2q}\beta^{-\tau})\cdots(x + \alpha^{-l_2q^{d-1}}\beta^{-\tau})$ imply $\alpha^{-l_1} = \alpha^{-l_2q^s}\beta^{-\tau}$ for some nonnegative integer *s* (*s* < *d*). • Hence $l_1 \equiv l_2 q^s + \tau \left(\frac{q^{d-1}}{q-1}\right) \mod q^d - 1$. • So, $l_1 \equiv l_2 q^s \mod \frac{q^{a-1}}{q-1}$, and $l_1 = l_2$. Now $l_1 \equiv l_1 q^s \mod \frac{q^a - 1}{q - 1}$, and hence s = 0 since $m_{l_1} = d$. • In all, $l_1 \equiv l_1 + \tau \left(\frac{q^d - 1}{q - 1}\right) \mod q^d - 1$. This implies $q - 1 | \tau$, and therefore $\tau = 0$.

Remaining steps for the family construction are straightforward



Example for q = 199, L = q - 1 = 198 for M = 2 and M = 198

М	d	(d, q - 1)	$ \Lambda $ or $ \Lambda' $	$ \Sigma $ or $ \Sigma' $	$ \Sigma^{ext} $ or $ \Sigma'^{ext} $	$(2d-1)\sqrt{q}+1$ or $3\sqrt{q}+3$
2	2	2	99	99	198	45.32
	3	3	13266	13266	13365	71.53
	4	2	1980000	1980000	1980099	99.75
	5	1	315231920	315231920	315232019	127.96
	6	6	52275946734	52275946734	52275946833	156.17
198	2	2	99	19503	3842288	45.32
	3	3	13266	2613402	6436187	71.53
	4	2	1980000	390060000	393882785	99.75
	5	1	315231920	62100688240	62104511025	127.96
	6	6	52275946734	10298361506598	10298365329383	156.17

Summary

Author	Family size	Correlation bound	Method
Sidelnikov '69	1	4 (regardless of q and M)	By construction
Song '07	M-1	$\sqrt{q} + 3$	Constant Multiple
No & Yang '08-'09	$M - 1 + \frac{(M-1)^2(q-1)}{2} + 0$	$3\sqrt{q} + 5$	+ Shift-and-add
Gong '10	$\left(M - 1 + \frac{(M - 1)^2(q - 1)}{2}\right) + \frac{(M - 1)(q - 1)}{2}$	$3\sqrt{q} + 5$	+ Column sequence
Kim '10	$\approx \left(M - 1 + \frac{(M - 1)^2(q - 1)}{2} \right) + \frac{(M - 1)q^{d - 1}}{d}$	$(2d - 1)\sqrt{q} + 1$	Extension of Gong, With (d,q-1)=1
IT Trans submission	comparable	comparable	Variation of Kim, Without (d,q-1)=1

Any questions?