Constructions for favorable sequences family using Sidelnikov sequences

ITA 2014 Feb. 10-14

Hong-Yeop Song
Yonsei University
Seoul, Korea

Seoul, Korea

Motivation

- Synchronization, Distinguishing users, Interference minimization, Higher resolution RADAR,...
- 1969 Sidelnikov (autocorrelation property only)
- 2007~Present Sequence families from Sidelnikov sequences

Purpose

- Sequence families with larger size
- Sequence families with lower correlation magnitude

Brief History and Main Contribution

(SONG-07) Sequence family constructions from Sidelnikov sequences have been considered, by using constant multiples

(NO-08, YANG-09) Family size increased by additionally using shiftand-adds

(GONG-10) **2-D** array structure of size
$$(q-1) \times \left(\frac{q^2-1}{q-1}\right)$$

(KIM-10) 2-D array structure of size
$$(q-1) \times \left(\frac{q^{d-1}}{q-1}\right)$$
 with $(d, q-1) = 1$

(This paper) 2-D array structure of size
$$(q-1) \times \left(\frac{q^d-1}{q-1}\right)$$
 without $(d,q-1)=1$

maintaining the family size "comparable" to the above and the correlation bound the same as the above

Notation

- p:prime
- $\mathbf{q} = \mathbf{p}^{\mathbf{n}}$: prime power or prime
- GF(q): finite field of order q
- GF(q^d): finite field of order q^d with $2 \le d < (\sqrt{q} \frac{2}{\sqrt{q}} + 1)/2$
- α : arbitrary but fixed primitive element of $GF(q^d)$
- $\beta = \alpha^{(q^d-1)/(q-1)}$: the primitive element of GF(q)
- \bullet_{M} : complex Mth root of unity, where M|q 1
- \bullet ψ : the multiplicative character of order M from GF(q), defined by

$$\psi(x) = \exp(\frac{2\pi i}{M} \log_{\beta} x) = \omega_{M}^{\log_{\beta} x}$$
 and
$$\psi(0) = 1.$$

Sidelnikov Sequences of period q-1

- GF(q) = finite field of size q where $q = p^n$
- β = primitive element of GF(q)
- M = a divisor of q − 1
- Coset Partition
 - ✓ D_0 : the set of M-th powers in $GF(q)^*$
 - $\checkmark D_k = \beta^k \cdot D_0$ for $0 \le k \le M-1$
- An M-ary SideInikov sequence of period q 1 is defined as, for t = 0, 1, 2,..., q-2,

 SideInikov-69

$$s(t) = \begin{cases} \mathbf{0}, & \text{if } \boldsymbol{\beta}^t + \mathbf{1} = \mathbf{0} \\ k, & \text{if } \boldsymbol{\beta}^t + \mathbf{1} \in D_k \end{cases}$$

(Example)
$$p = q = 13$$
, $M = 3$, $\beta = 2$

- $D_0 = 2^0 \cdot D_0 = \{1,5,8,12\} = \text{cubic residues mod } 13$
- $D_1 = 2^1 \cdot D_0 = \{2,10,3,11\}$
- $D_2 = 2^2 \cdot D_0 = \{4,7,6,9\}$

t	0	1	2	3	4	5	6	7	8	9	10	11
$\beta^t = 2^t$	1	2	4	8	3	6	12	11	9	5	10	7
β ^t +1	2	3	5	9	4	7	0	12	10	6	11	8
belongs to	D_1	D_1					?		D_1		D_1	
S(t)	1	1	0	2	2	2	0	0	1	2	1	0

$s(t) \equiv \log_{\beta}(\beta^t + 1) \pmod{12}$

Is this ADDONE table of the finite field GF(13)?

t	β^{t}	$\beta^{t} + 1$	$\log_{\beta} (\beta^t + 1) \pmod{12}$		(mod 3)				
*	0	1	0						
0	1	2	1		1				
1	$\beta = 2$	3	4		1				
2	$\beta^2 = 4$	5	9		0				
3	$\beta^3 = 8$	9	8		2				
4	$\beta^4 = 16 = 3$	4	2		2				
5	$\beta^5 = 6$	7	11		2				
6	$\beta^{6} = 12$	0							
7	11	12	6		0				
8	9	10	10		1				
9	5	6	5		2				
10	10	11	7		0				
11	7	8	3		0				

Sidelnikov Sequences (alternative definition)

The M-ary Sidelnikov sequence s(t) of period q-1 is defined by, for $0 \le t \le q-2$,

$$s(t) \equiv \log_{\beta}(\beta^t + 1) \mod M$$
,

where we assume that $\log_{\beta}(0) = 0$.

2-D array structure of size $(q-1) \times \left(\frac{q^2-1}{q-1}\right)$

Gong-10

- Write a **SideInikov sequence of period q^2 1** as an array of size $(q 1) \times (q + 1)$.
- the first column sequence is always a constant-multiple of a Sidelnikov sequence of period q - 1.
- other column sequences of period q 1 (not necessarily Sidelnikov sequences) have GOOD correlations
 - NOT ONLY with each other
 - BUT ALSO with previously constructed family members of period $\mathbf{q} \mathbf{1}$ if they are not cyclically equivalent to each other.
 - → Nontrivial increase in the family size

Theorem (Gong-10)

Let \mathcal{U} be the set of sequences of period q-1 given as follows:

$$\mathcal{U} = \{cs(t) | 1 \le c \le M - 1\}$$

$$\cup \left\{ c_0 s(t) + c_1 s(t + l_1) \middle| 1 \le l_1 \le \left\lfloor \frac{q - 1}{2} \right\rfloor \right\}$$

$$\cup \left\{ c_2 v_{l_2}(t) \middle| 1 \le l_2 \le \left\lfloor \frac{q}{2} \right\rfloor \right\}.$$

Then,

- 1 The maximum correlation of \mathcal{U} is upper bounded by $3\sqrt{q} + 5$.
- 2 This family have size $\frac{M(M-1)(q-2)}{2} + M 1$.

If $v_l(t)$ is the column sequence of the (q-1) x (q+1) array of a Sidelnikov sequence of period $\mathbf{q^2} - \mathbf{1}$ given by

$$\log_{\alpha}(\alpha^{t}+1) \mod M$$
,

Then s(t) must be the Sidelnikov sequence of period $\mathbf{q} - \mathbf{1}$ given by

$$\log_{\beta}(\beta^{t}+1) \mod M$$
 where $\beta = \alpha^{(q^2-1)/(q-1)} = \alpha^{q+1}$.

Kim's Generalization

D.S. Kim, 2010: A family of sequences with large size and good correlation property arising from M-ary Sidelnikov sequences of period q^d-1, <u>arXiv:1009.1225v1</u> [cs.IT]

• Why not considering a sidelnikov sequence of period q^3-1 , q^4-1 or q^d-1 in general in the first place and then using **an array of size** $(\mathbf{q-1}) \times (\frac{q^d-1}{a-1})$?

Key Observation – Theorem and remark

- To analyze the column sequences of the array, one has to represent the Sidelnikov sequence of period q^d - 1 using a primitive element of GF(q).
- THEOREM:

Let α be a primitive element of $GF(q^d)$.

$$\beta = \alpha^{(q^d-1)/(q-1)}$$
: the primitive element of GF(q)

For period $q^d - 1$, we have

$$s(t) \equiv \log_{\beta} N(\alpha^{t} + 1) \mod M.$$

• REMARK: when d = 2, it becomes that

$$N(\alpha^{t} + 1) = (\alpha^{t} + 1)^{\frac{q^{2} - 1}{q - 1}} = (\alpha^{t} + 1)^{q + 1} = (\alpha^{t} + 1)^{q}(\alpha^{t} + 1)$$
$$= \alpha^{(q+1)t} + \alpha^{qt} + \alpha^{t} + 1 = \beta^{t} + 1 + Tr(\alpha^{t})$$

Key Observation - proof

- Let α be a primitive element of $GF(q^d)$.
- For period $q^d 1$, denote $y(t) \equiv \log_{\alpha}(\alpha^t + 1) \mod q^d 1$.
- Assume that $N(\alpha^t + 1) \neq 0$. Then $N(\alpha^t + 1) = \beta^{x(t)}$.
- This gives:

$$\begin{split} \frac{q^{d-1}}{q-1}y(t) &\equiv \frac{q^{d-1}}{q-1}log_{\alpha}(\alpha^t+1) \equiv log_{\alpha}(\alpha^t+1)^{\frac{q^{\alpha}-1}{q-1}} \\ &\equiv log_{\alpha}\,N(\alpha^t+1) \equiv log_{\alpha}\,\beta^{x(t)} \equiv log_{\alpha}\,\alpha^{\frac{q^{d-1}}{q-1}x(t)} \\ &\equiv \frac{q^{d-1}}{q-1}x(t) \quad \text{mod } q^d-1 \end{split}$$

• Since $\left(\frac{q^{d-1}}{q-1}, q^d - 1\right) = \frac{q^{d-1}}{q-1}$, we have:

 $x(t) \equiv y(t) \equiv \log_{\beta} N(\alpha^{t} + 1) \mod q - 1$ (and hence, mod M).

Columns of the Array Structure

Kim-10

Let $d \ge 2$, and write a Sidelnikov sequence of period $q^d - 1$ as an array of size $(q - 1) \times (\frac{q^{d-1}}{q-1})$. Then, the column sequences $v_l(t)$ of the array can be represented as

$$v_l(t) \equiv \log_{\beta} f_l(\beta^t) \pmod{M}$$

where $f_l(x) = N(\alpha^l x + 1)$.

Proof:

$$v_l(t) \equiv s \left(\frac{q^d - 1}{q - 1} t + l \right) \equiv \log_{\beta} N(\alpha^{\frac{q^d - 1}{q - 1} t + l} + 1) \equiv \log_{\beta} N(\alpha^l \beta^t + 1)$$

Cyclic Equivalence of Columns

Kim-10

Let $d \geq 2$, and write a Sidelnikov sequence of period q^d-1 as an array of size $(q-1)\times(\frac{q^{d-1}}{q-1})$. The column sequences are denoted by $v_l(t)$ for $l=0,1,2,\ldots,\frac{q^{d-1}}{q-1}-1$. Then,

- (1) For l = 0, $v_0(t) \equiv d \log_{\beta}(\beta^t + 1) \mod M$
- (2) For $l \neq 0$, $v_l(t) \equiv v_{la}(t) \mod M$

where lq is computed mod $\frac{q^{d-1}}{q-1}$

Family of Column Sequences

Kim-10

Assume that
$$(d, q - 1) = 1$$
, $d < \frac{\sqrt{q} - \frac{2}{\sqrt{q}} + 1}{2}$.

Construct a family

$$\Sigma = \{ cv_l(t) \mid 1 \le c < M \text{ and } l \in \Lambda \setminus \{0\} \}$$

where ∧ is the set of all the representatives

of q-cyclotomic cosets mod
$$\frac{q^{a-1}}{q-1}$$
.

Then

- $|C_{max}(\Sigma)| \leq (2d-1)\sqrt{q} + 1.$
- ②The asymptotic size of the family is $\frac{(M-1)q^{d-1}}{d}$ as $q \to \infty$.

Importance of gcd(d, q - 1)

q	$\gcd(q-1,3)$	$\gcd(q-1,4)$	q	$\gcd(q-1,3)$	$\gcd(q-1,4)$
31	3	X	61	3	4
37	3	X	64	3	1
41	1	X	67	3	2
43	3	X	71	1	2
47	1	X	73	3	4
49	3	X	79	3	2
53	1	4	81	1	4
59	1	2	83	1	2

Can we remove the condition (d,q-1)=1?

• q-cyclotomic coset mod $q^d - 1$

Natural

• q-cyclotomic coset mod $\frac{q^{d-1}}{q-1}$

- ightharpoonup Define $\Lambda \setminus \{0\}$ Kim-10
- q-cyclotomic coset mod $\frac{q^{d}-1}{q-1}$ with full size $d \Rightarrow \underline{\text{Define } \Lambda' \setminus \{0\}}$

- Example (q = 7, d = 2)
 - 7-cyclotomic coset mod 48
 - ✓ There exists 23 cosets of size 2 except {0}, {7}
 - 7-cyclotomic coset mod 8

- 7-cyclotomic coset mod 8 of size d(=2)
 - √ {1,7}, {2,6}, {3,5}

MAIN THEOREM

For
$$2 \le d < \frac{\sqrt{q} - \frac{2}{\sqrt{q}} + 1}{2}$$
, the sequences in the family
$$\Sigma' = \{cv_l(t) | 1 \le c < M, l \in \Lambda' \setminus \{0\}\}$$
 are cyclically inequivalent.

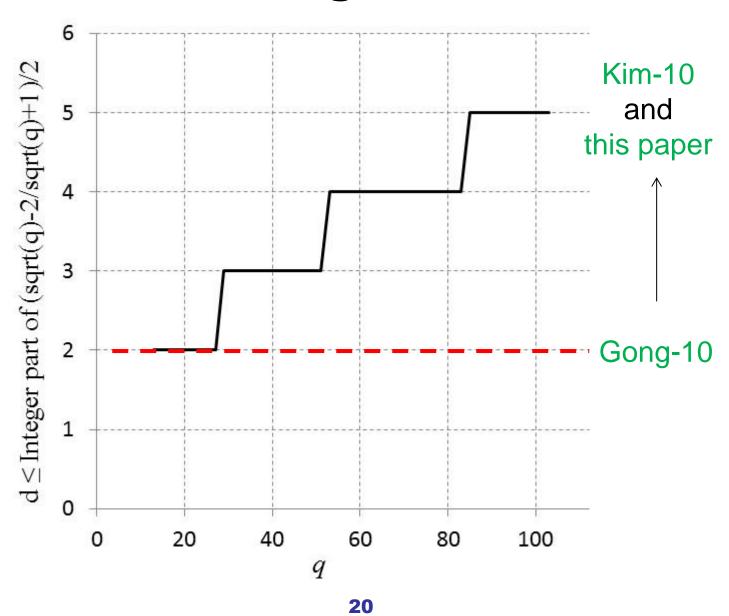
Further, we have

$$|C_{max}(\Sigma')| \le (2d-1)\sqrt{q} + 1,$$

and

$$(M-1)|\Lambda'| = |\Sigma'| \cong |\Sigma| = (M-1)|\Lambda|$$

Range of d



Example for case $(q - 1, d) \neq 1$

Let q = 7, M = 6, d = 3. Consider finite field GF(343).

Then 6-ary Sidelnikov sequence s(t) of period 48 is represented by 6×57 array as follows:

$$s(t) = [v_0(t), v_1(t), \dots, v_{55}(t), v_{56}(t)]$$

			_																																																					
0	4	0	1	5	4	3	4	0	4	1	5	5	5	0	3	3 4	2	4	3	2	1	3	0	1	1	4	0	5	4	0	3	4	2	0	4	3	2	1	2	1	2	3	3	2	3	0 5	5	3	4	0	3	3	4	3	3 0	
3	0	5	4	5	3	4	0	1	5	1	4		5 1	5	2	2 2	3	5	5	5	4	4	1	4	4	1	5	5	0	2	2	4	3	0	3	5	2	2	5	5	0	4	4	0	0	2 2	2 :	3	0	1	2	4	0	5	4 1	
3	1	3	1	2	2	5	1	5	2	5	2	2	1 1	3	5	1	. 3	0	3	4	1	1	0	4	5	2	5	2	2 0	4	0	1	1	1	2	1	3	1	3	3	5	5	2	1	2	2 () 2	2	1	5	5	1	0	1 3	2 5	
0	3	1	1	1	3	2	3	0	2	1	4		5	1	5	0	5	0	5	2	1	3	3	4	5	5	4	1	4	2	0	4	4	1	3	4	2	2	0	4	3	2	1	0 4	4	3 1	L !	5	3	0	5	3	4	4 :	1 0	
3	2	0	2	4	3	2	2	2	0	0	1	() 1	() 1	4	4	5	3	4	2	1	. 5	3	5	4	5	4	4	5	2	0	1	5	3	4	0	1	2	1	1	2	0	3	2	2 () !	5	2	2	1	1	4 /	4 (0 2	
0	4	2	3	5	5	0	4	3	3	0	2	2) (2	2 3	3	3	5	5	1	3	5	2	5	2	2	0	5	1	3	2	0	1	1	5	4	0	2	4	3	0	0	4	5	5	0 3	3	1	4	3	3	5	1 4	4 4	4 3	
																																	Т															J	Ľ							

- $v_l(t) = v_{lq}(t)$.
- In above figure, $v_{19}(t)$ and $v_{38}(t)$ are sequences of period 2.
- In general, we can not use all the representatives since $(q-1,d) \neq 1$.

Proof of Main Theorem

Suppose that $c_1 v_{l_1}(t) = c_2 v_{l_2}(t+\tau)$ for some τ ($o \le \tau < q-1$). Then,

$$q - 1 = \sum_{t=0}^{q-2} \omega_M^{c_1 v_{l_1(t)} - c_2 v_{l_2}(t+\tau)} = \sum_{t=0}^{q-2} \psi^{c_1} (f_{l_1}(\beta^t)) \psi^{M-c_2} (f_{l_2}(\beta^{t+\tau}))$$

$$= \sum_{x \in GF(q)} \psi_1 (\beta^{l_1} p_{l_1}(x)) \psi_2 (\beta^{l_2} \cdot \beta^{\tau d} \cdot \beta^{-\tau d} p_{l_2}(\beta^{\tau} x)) - 1$$

where $\psi_1 = \psi^{c_1}$ and $\psi_2 = \psi^{M-c_2}$ and $p_I(x) = \beta^{-l} f_I(x)$.

Claim

Claim
$$\left|\sum_{x \in GF(q)} \psi_1(\beta^{l_1} p_{l_1}(x)) \psi_2(\beta^{l_2} \cdot \beta^{\tau d} \cdot \beta^{-\tau d} p_{l_2}(\beta^{\tau} x))\right| \stackrel{??}{\leq} (2d-1)\sqrt{q}$$

If the above claim is true, then $q-1 \leq (2d-1)\sqrt{q}+1$.

This is impossible because of our assumption $d < (\sqrt{q} - \frac{\sqrt{q}}{2} + 1)/2$.

Weil bound

Wan-97/Gong-10/Kim-10

Let $f_1(x), ..., f_m(x)$ be **distinct monic irreducible** polynomial over GF(q) with degrees $d_1, ..., d_m$, with e_j the **number of distinct roots** in GF(q) of $f_j(x)$.

Let $\psi_1, ..., \psi_m$ be nontrivial multiplicative characters of GF(q), with $\psi_i(0) = 1$.

Then **for every** $a_i \in \mathbb{F}_q \setminus \{0\}$, we have the estimate

$$\left|\sum_{x\in\mathbb{F}_q}\psi_1(a_1f_1(x))\cdots\psi_m(a_mf_m(x))\right|\leq \left(\sum_{i=1}^m d_i-1\right)\sqrt{q}+\sum_{i=1}^m e_i\,.$$

For the proof of claim, we have to show that the following statement is true:

Let l_1, l_2 be elements in $\Lambda' \setminus \{0\}$, and let $\tau(0 \le \tau < q - 1)$ be an integer. Then $p_{l_1}(x)$ and $\beta^{-\tau d}p_{l_2}(\beta^{\tau}x)$ are distinct irreducible polynomials over GF(q), unless $l_1 = l_2$ and $\tau = 0$.

Note that $p_l(x)$ is alternative form of $f_l(x) = N(\alpha^l x + 1)$.

For each
$$l\left(0 \le l < \frac{q^{d-1}}{q-1}\right)$$
,
$$f_l(x) = \beta^l N(x + \alpha^{-l})$$
$$= \beta^l (x + \alpha^{-l})(x + \alpha^{-lq}) \cdots (x + \alpha^{-lq^{d-1}})$$
$$= \beta^l p_l(x)^{d/d_l}$$

where $p_l(x)$ is the minimal polynomial over GF(q) of $-\alpha^{-l}$ of degree d_l . And if $l \in \Lambda'$, then $d = d_l = m_l$. So, $f_l(x) = \beta^l p_l(x)$.

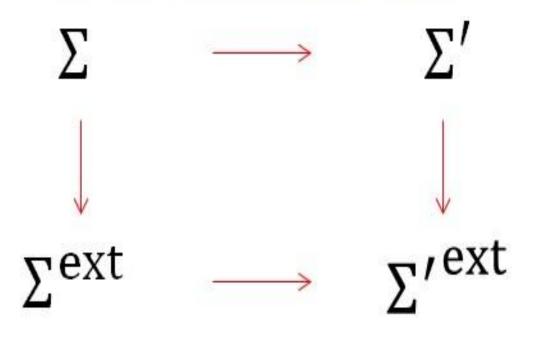
Proof of the statement

- Assume that they are the same.
- $\beta^{-\tau d} p_{l_2}(\beta^{\tau} x) = \\ \left(x + \alpha^{-l_2} \beta^{-\tau} \right) \left(x + \alpha^{-l_2 q} \beta^{-\tau} \right) \cdots \left(x + \alpha^{-l_2 q^{d-1}} \beta^{-\tau} \right) \text{ imply} \\ \alpha^{-l_1} = \alpha^{-l_2 q^s} \beta^{-\tau} \text{ for some nonnegative integer } s \ (s < d).$
- Hence $l_1 \equiv l_2 q^s + \tau \left(\frac{q^d 1}{q 1}\right) \mod q^d 1$.
- So, $l_1 \equiv l_2 q^s \mod \frac{q^{d-1}}{q-1}$, and $l_1 = l_2$.
- Now $l_1 \equiv l_1 q^s \mod \frac{q^d-1}{q-1}$, and hence s=0 since $m_{l_1}=d$.
- In all, $l_1 \equiv l_1 + \tau \left(\frac{q^{d-1}}{q-1}\right) \mod q^d 1$.
- This implies $q 1 | \tau$, and therefore $\tau = 0$.

Remaining steps for the family construction are straightforward

$$\Lambda \longrightarrow \Lambda'$$

by removing the representatives of the cosets of size **smaller** than *d*



by adding the constant multiples of the Sidelnikov sequence of period q-1 using β as well as some of their shift-and-add's

Example for $q=199,\,L=q-1=198$ for M=2 and M=198

M	d	(d, q - 1)	$ \Lambda $ or $ \Lambda' $	$ \Sigma $ or $ \Sigma' $	$ \Sigma^{ext} $ or $ \Sigma'^{ext} $	$(2d-1)\sqrt{q}+1 \text{ or } 3\sqrt{q}+3$
	2	2	99	99	198	45.32
	3	3	13266	13266	13365	71.53
2	4 2		1980000	1980000	1980099	99.75
	5	1	315231920	315231920	315232019	127.96
	6	6	52275946734	52275946734	52275946833	156.17
	2	2	99	19503	3842288	45.32
	3	3	13266	2613402	6436187	71.53
198	4	2	1980000	390060000	393882785	99.75
	5	1	315231920	62100688240	62104511025	127.96
	6	6	52275946734	10298361506598	10298365329383	156.17

Summary

Author	Family size	Correlation bound	Method
Sidelnikov '69	1	4 (regardless of q and M)	By construction
Song '07	M - 1	$\sqrt{q} + 3$	Constant Multiple
No & Yang '08-'09	$M-1+\frac{(M-1)^2(q-1)}{2}+0$	$3\sqrt{q}+5$	+ Shift-and-add
Gong '10	$\left(M - 1 + \frac{(M-1)^2(q-1)}{2}\right) + \frac{(M-1)(q-1)}{2}$	$3\sqrt{q}+5$	+ Column sequence
Kim '10	$\approx \left(M - 1 + \frac{(M-1)^{2}(q-1)}{2}\right) + \frac{(M-1)q^{d-1}}{d}$	$(2d-1)\sqrt{q}+1$	Extension of Gong, With (d,q-1)=1
IT Trans submission	comparable	comparable	Variation of Kim, Without (d,q-1)=1

Thanks for your attention...

Any questions?