

Generalized Locality for Distributed Storage Codes

Hong-Yeop Song Yonsei university, Korea

Sunday 2/1 – Friday 2/6 2015 Information Theory and Applications Workshop

Contents

1. Introduction

- Distributed Storage Codes
 - Locally Repairable Codes
- > 2. Main Contribution
 - A. Generalized Locality
 - Bounds for Codes with Generalized Locality
 - Simplex Codes & IR-Simplex Codes
 - B. Complete Graph Codes
 - C. Complete Multipartite Graph Codes

3. Conclusion

Distributed Storage Codes

- Codes for Distributed Storage Systems
 - Store data while protecting against node failures

Locally Repairable Codes (LRC)

• How to reduce the cost for data repair?

Concept of Locality

(Gopalan-12) introduced codes with locality & minimum distance bound

(Papailiopoulos-12) generalized the minimum distance bound for non-linear codes and vector codes

(Tamo-14, Prakash-14, Rawat-14) devoted the locality in handling of

multiple node failures

A. S. Rawat, A. Mazumdar, and S.Vishwanath. (2014). "Cooperative local repair in distributed storage," [Online]. Available: http://arxiv.org/abs/1409.3900.

(This presentation) introduces generalized locality and related bounds

Construction of Codes with Locality

(Huang-07) Pyramid codes

(Kamath-I3) MSR/MBR-local codes

(Huang-12) Local reconstruction codes

(Sathiamoorthy-I3) Locally repairable codes

(Krishnan-I4, Shahabinejad-I4) Codes with locality for Hadoop

(This presentation) proposes a construction of codes with GOOD generalized locality

Preliminary

Let $G : \mathbb{F}_q^M \mapsto \mathbb{F}_q^{n \cdot \alpha}$ be an encoding (generator) function:

$$G(\boldsymbol{X}) = \boldsymbol{Y} = (Y_1, Y_2, \dots, Y_n),$$

where $X \in \mathbb{F}_q^M$ and $Y \in \mathbb{F}_q^{n \cdot \alpha}$.

We denote the code determined by the encoding function G as an $(n, (M, \alpha), d)_q$ code C, where d is the minimum distance.

Motivation

To construct distributed storage codes,

We should consider all possible failure patterns together.

Motivation

Assume that the code is optimized **only** for **2-erasures**

Definition

Consider an $(n, (M, \alpha), d)_q$ code C given by the above. Let ℓ be an integer with $1 \leq \ell \leq d - 1$, and $E \subset [n]$ with $|E| = \ell$. We denote by Y_E the set of coded symbols $Y_i, i \in E$. That is $Y_E = \{Y_i | i \in E, |E| = \ell\}$. Then,

1) $R(E) \subseteq [n] \setminus E$ is called a repair set for Y_E if every $Y_i, i \in E$ can be regenerated by a set of functions on $Y_j, j \in R(E)$. (Rawat-14) Note that there can be many different repair sets for a given set of symbols Y_E .

2) The integer r is called the locality of Y_E if r is the minimum of all the cardinalities of the repair sets for Y_E .

It is called the ℓ -locality of \mathcal{C} if every set of symbols Y_E , $|E| = \ell$, has the locality at most r. The ℓ -locality of \mathcal{C} is denoted by r_{ℓ} . (Rawat-14)

3) The set of integers, $r_1, r_2, ..., r_{d-1}$, is called the generalized locality of C.

Example 1

A repair set of Y_1 : $R(1) = \{3,4\}$ A repair set of Y_2 : $R(2) = \{4,5,6\}$

Let $E = \{1,2\}$. A repair set of $Y_E : R(E) = \{3,4,5,6\}$

Locality of Y_1 : 2 Locality of Y_2 : 3 Locality of Y_E : 4

Locality (1-locality) of C : 3 2-locality of C : 4 Generalized Locality of C : $(r_1 = 3, r_2 = 4)$

Bounds for Codes with GL

Theorem 1

Let C be an $(n, (M, \alpha), d)_q$ code with generalized locality $(r_1, r_2, ..., r_{\ell})$. Then, the minimum distance of C is bounded as

$$d \leq \min_{\ell \geq 1} \left(n - \left[\frac{M}{\alpha} \right] + 1 - \ell \cdot \left(\left[\frac{M}{r_{\ell} \cdot \alpha} \right] - 1 \right) \right).$$

	Target Codes			Locality Types			
	$\begin{array}{l} Scalar \\ (\alpha = 1) \end{array}$	Vector $(\alpha \ge 1)$	Linear	Non- linear	$\begin{array}{l} 1 \text{-locality} \\ (\ell = 1) \end{array}$	$ \begin{array}{l} \ell \text{-locality} \\ (\ell \geq 1) \end{array} $	Generalized locality
Gopalan-12	0		0		0		
Forbes-13	0		0	0	0		
Papailiopoulos-12	0	Ο	0	0	0		
Rawat-14	0		0	0	0	0	
Ours	Ο	Ο	Ο	Ο	Ο	Ο	Ο

Simpler version (linear and scalar) and some derived new bounds

Let C be an $[n, k, d]_q$ code with generalized locality $(r_1, r_2, ..., r_\ell,)$.

$$d \leq \min_{\ell \geq 1} \left(n - k + 1 - \ell \cdot \left(\left\lceil \frac{k}{r_{\ell}} \right\rceil - 1 \right) \right)$$

and, hence,

$$R(\mathcal{C}) \le \min_{\ell \ge 1} \left(\frac{r_{\ell}}{r_{\ell} + \ell} \right)$$

and

$$\left[\frac{k \cdot \ell}{n-k+1-d+\ell}\right] \leq r_\ell \leq k \ \text{ for } 1 \leq \ell \leq d-1$$

Example: For $[7,3,4]_2$ code and $\ell = 3$,

$$3 = \left[\frac{3 \cdot 3}{7 - 3 + 1 - 4 + 3}\right] \le r_{\ell} \le 3$$
 implies $r_3 = 3$

Construction of codes with $(r_1, r_2) = (2, 3)$

• One choice would be simplex codes with the parameter $n = 2^k - 1, k, d = 2^{k-1}$.

• Examples:

•
$$G = \begin{pmatrix} 100 & 110 & 1 \\ 010 & 101 & 1 \\ 001 & 011 & 1 \end{pmatrix}$$
 for $k=3$
• $G = \begin{pmatrix} 1000 & 111000 & 1110 & 1 \\ 0100 & 100110 & 1101 & 1 \\ 0010 & 010101 & 1011 & 1 \\ 0001 & 001011 & 0111 & 1 \end{pmatrix}$ for $k=4$

 $r_{\ell} \leq \ell + 1$ (Rawat-14)

• It has $(r_1, r_2) = (2, 3)$.

• Code rate
$$=\frac{k}{2^{k}-1}$$
 (VERY LOW)

• **Question**: Can we improve the rate maintaining the property $(r_1, r_2) = (2, 3)$?

One simple idea that works

- Can we prove that this modified code STILL has $(r_1, r_2) = (2, 3)$?
- What is the code ? Its generator matrix has all the columns of weight 1 and weight 2 ONLY.
- It can be described as a complete graph with 4 vertices.
 Columns are all the vertices and edges of K₄

Complete Graph Codes

• Construction of $[k(k+1)/2, k, k]_2$ codes

 K_6 complete graph (k = 6)

Generator matrix of $[21, 6, 6]_2$ code

Theorem: It has $d_{min} = k$ and 1) $r_1 = 2$ for $k \ge 2$. 2) $r_2 = 3$ for $k \ge 3$. 3) $r_{\ell} \le \min(2\ell, k)$ for $k \ge 2$ and $\ell \in [k - 1]$.

Complete Multipartite (p-partite) Graph Codes

• Construction of $[k(k-q+2)/2, k, k-q+1]_2$ codes

Complete 2-partite 3-uniform graph with 6 vertices (p = 2, q = 3, k = 6) Generator matrix of $[15, 6, 4]_2$ code

Theorem: It has
$$d_{min} = k - q + 1$$
 and
I) $r_1 = 2$ for $k \ge 2$.
2) $r_2 = \begin{cases} 3, & \text{for } q = 1 \text{ and } k \ge 3, \\ 4, & \text{for } q \ge 2 \text{ and } k \ge 3. \end{cases}$

3) $r_{\ell} \leq \min(2\ell, k)$ for $k \geq 2$ and $\ell \in [k - q]$.

Complete Multipartite Graph Codes

Code rates

$$R = \frac{2}{k-q+2} \qquad \ge \ R_S = \frac{k}{2^{k}-1}$$

Minimum distances

$$d = k - q + 1 \quad \le d_S = 2^{k-1}$$

Complete Multipartite Graph Codes

Codes	Graphs	Generator matrices			
[3, 2, 2] ₂ code (q = 1, k = 2)	(Complete graph)	$\left(\begin{smallmatrix}1&0&1\\0&1&1\end{smallmatrix}\right)$			
$[6, 3, 3]_2$ code (q = 1, k = 3)	(Complete graph)	$\begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$			
$[10, 4, 4]_2$ code (q = 1, k = 4)	(Complete graph)	$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$			
[21, 6, 6] ₂ code (q = 1, k = 6)	(Complete graph)	$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0$			

Complete Multipartite Graph Codes

Simplex Codes

Let k be a positive integer, $n = 2^k - 1$, and let G be a $k \times n$ matrix whose columns are all the distinct non-zero vectors of \mathbb{F}_2^k . Let C be an $[n, k, d]_2$ code that has G as its generator matrix. Then, C is called a binary simplex code with $d = 2^{k-1}$.

$$G = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$

A generator matrix of $[7,3,4]_2$ simplex code

Number of symbol sets with cardinality ℓ and locality r	<i>r</i> = 1	r=2	r = 3	ℓ -locality of C
$\ell = 1$		n		<i>r</i> ₁ = 2
$\ell = 2$			$\binom{n}{2}$	$r_2 = 3$
$\ell = 3$			$\binom{n}{3}$	r ₃ = 3

Identity Repeated (IR) Simplex Codes

Let G be a $k \times n$ matrix constructed by adding an identity matrix in front of a generator matrix of a simplex code. Let C be an $[n, k, d]_2$ code that has G as its generator matrix. Then, C is called an IR-simplex code with $n = 2^k - 1 + k$ and $d = 2^{k-1} + 1$.

$$G = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$

A generator matrix of $[10,3,5]_2$ IR-simplex code

Number of symbol sets with cardinality ℓ and locality r	<i>r</i> = 1	r=2	r = 3	ℓ -locality of $\mathcal C$
$\ell = 1$	2 <i>k</i>	n-2k		r ₁ = 2
$\ell = 2$		k(2n-2k-1)	$\binom{n-2k}{2}$	<i>r</i> ₂ = 3
$\ell = 3$		4k(k-1)	$\binom{n}{3} - 4k(k-1)$	r ₃ = 3

Simplex Codes & IR-Simplex Codes

Comparison of Localities

Simplex Codes & IR-Simplex Codes

Comparison of Localities

Conclusion

- introduce "generalized locality"
- improved bounds on various parameters
- complete graph codes
- complete multipartite graph codes
- generalized locality of simplex codes
- IR-simplex codes
- some good algorithm of attaching a column to G for better locality