

Families of Perfect Polyphase Sequences from the Array Structure of Fermat-Quotient Sequences and Frank-Zadoff Sequences

Ki-Hyeon Park, Hong-Yeop Song, Dae-San Kim

2015 IEEE International Symposium on Information Theory Hong-Kong 14 ~ 19, June 2015

> Communication Signal Design Lab. Yonsei University

Fermat-Quotient Sequence

Fermat-quotient

$$Q(t) \triangleq \frac{t^{p-1} - 1}{p}$$

- Integer for $t \neq 0 \mod p$
- p is an odd prime
- Fermat-Quotient sequence q = (q(0), q(1), ...)

$$q(t) \triangleq \begin{cases} Q(t) \mod p & \text{if } t \neq 0 \mod p \\ 0 & \text{otherwise} \end{cases}$$

- p-ary, period p^2
- Chen (2010) and Ostafe(2011)

p = 5, q = (0, 0, 3, 1, 1, 0, 4, 0, 4, 2, 0, 3, 2, 2, 3, 0, 2, 4, 0, 4, 0, 1, 1, 3, 0)

$$\boldsymbol{q} = \begin{bmatrix} 0 & 0 & 3 & 1 & 1 \\ 0 & 4 & 0 & 4 & 2 \\ 0 & 3 & 2 & 2 & 3 \\ 0 & 2 & 4 & 0 & 4 \\ 0 & 1 & 1 & 3 & 0 \end{bmatrix}$$

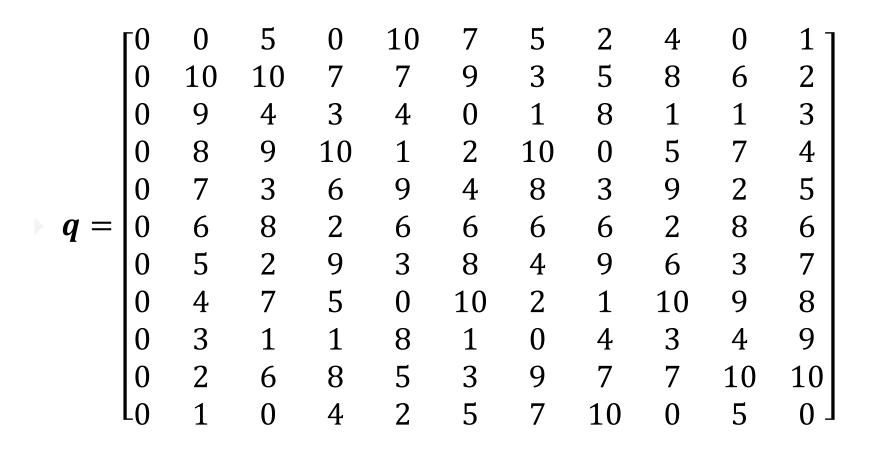
p imes pArray form

p = 7, q = (0, 0, 2, 6, 4, 6, 1, 0, 6, 5, 1, 2, 3, 2, 0, 5, 1, 3, 0, 0, 3, 0, 4, 4, 5, 5, 4, 4, 0, 3, 0, 0, 3, 1, 5, 0, 2, 3, 2, 1, 5, 6, 0, 1, 6, 4, 6, 2, 0)

$$\boldsymbol{q} = \begin{bmatrix} 0 & 0 & 2 & 6 & 4 & 6 & 1 \\ 0 & 6 & 5 & 1 & 2 & 3 & 2 \\ 0 & 5 & 1 & 3 & 0 & 0 & 3 \\ 0 & 4 & 4 & 5 & 5 & 4 & 4 \\ 0 & 3 & 0 & 0 & 3 & 1 & 5 \\ 0 & 2 & 3 & 2 & 1 & 5 & 6 \\ 0 & 1 & 6 & 4 & 6 & 2 & 0 \end{bmatrix}$$

4

▶ *p* = 11



Previous Results for Fermat-Quotient Sequences

- A. Ostafe and I. E. Shparlinski, "Pseudorandomness and dynamics of Fermat quotients," SIAM J. Discrete Math., 2011.
- D. Gomez and A. Winterhof, "Multiplicative Character Sums of Fermat Quotients and Pseudorandom Sequences," Periodica Mathematica Hungarica, 2012.
- Z. Chen, "Trace representation and linear complexity of binary sequences derived from Fermat quotients," Science China Information Sciences, Nov. 2014.
- M. Su, "New Optimum Frequency Hopping Sequences Derived From Fermat Quotients," Proceedings of IWSDA 2013, Oct. 2013.

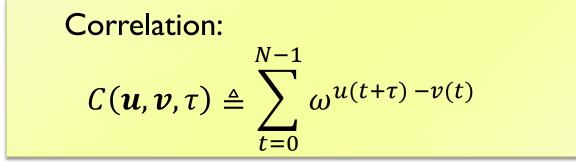
Main Contribution

- We show that the Fermat-Quotient sequence has perfect autocorrelation
 - Zero at any out-of phase
- We propose NEW sequence families, including the FQ sequence
 - Individual sequences are perfect
 - Cross-correlation is optimum

Complex Correlation of Sequences

p-ary, period *N*, two integer-represented polyphase sequences

$$u = (u(0), u(1), ...)$$
 and $v = (v(0), v(1), ...)$



 $\omega = e^{j\frac{2\pi}{p}}$ Complex primitive *p*-th root of unity

• We denote $C(\mathbf{u}, \mathbf{u}, \tau) = C(\mathbf{u}, \tau)$ as autocorrelation of \mathbf{u}

Perfect Sequence

A sequence *s* is called a *perfect sequence* if

$$C(\boldsymbol{s},\tau)=0$$

for all $\tau \neq 0 \mod N$,

<u>Theorem 1-1</u> :

The Fermat Quotient Sequence *q* is **perfect**

Sarwate Bound for Cross-Correlation

- Sequence family of size K, sequence length N
- C_A : Maximum magnitude of nontrivial autocorrelation
- *C_C* : Maximum magnitude of cross-correlation
- Bound (Sarwate, 1979):

$$\frac{C_{C}^{2}}{N} + \frac{N-1}{N(K-1)} \frac{C_{A}^{2}}{N} \ge 1$$

For a perfect sequence family, $C_C \ge \sqrt{N}$

Optimum Pair

- A pair u, v is an optimum pair if
 - ▶ *u*, *v* are perfect
 - Satisfies lower bound of Sarwate, that is,

$$\max_{0 \le \tau < N} |C(\boldsymbol{u}, \boldsymbol{v}, \tau)| = \sqrt{N}$$

Optimum Family

\$\mathcal{F} = {\mathbf{s}_1, \mathbf{s}_2, \mathbf{s}_3, \ldots, \mathbf{s}_M}\$ is an **optimum family** if all \$\mathbf{s}_i, \mathbf{s}_j\$ are **optimum pairs**

New Optimum Family

Theorem 1-2:
$$\mathcal{F}(q) = \{q, 2q, 3q, ..., (p-1)q\}$$
 is optimum

•
$$s = mq$$
 is a sequence with
 $s(i) \equiv mq(i) \mod p$

• Example:
$$p = 5$$
, $\mathcal{F}(q) = \{q, 2q, 3q, 4q\}$

q = (0,0,3,1,1,0,4,0,4,2,0,3,2,2,3,0,2,4,0,4,0,1,1,3,0) 2q = (0,0,1,2,2,0,3,0,3,4,0,1,4,4,1,0,4,3,0,3,0,2,2,1,0) 3q = (0,0,4,3,3,0,2,0,2,1,0,4,1,1,4,0,1,2,0,2,0,3,3,4,0)4q = (0,0,2,4,4,0,1,0,1,3,0,2,3,3,2,0,3,1,0,1,0,4,4,2,0)

Frank-Zadoff sequence

• p-ary Frank-Zadoff sequence z of period p^2

$$\mathbf{z} = \begin{bmatrix} 1 & 2 & 3 & 4 & 0 \\ 2 & 4 & 1 & 3 & 0 \\ 3 & 1 & 4 & 2 & 0 \\ 4 & 3 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \mathbf{z} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 0 \\ 2 & 4 & 6 & 1 & 3 & 5 & 0 \\ 3 & 6 & 2 & 5 & 1 & 4 & 0 \\ 4 & 1 & 5 & 2 & 6 & 3 & 0 \\ 5 & 3 & 1 & 6 & 4 & 2 & 0 \\ 6 & 5 & 4 & 3 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \qquad p = 7$$

> z is Perfect (Frank and Zadoff, 1962)

• $\mathcal{F} = \{z, 2z, 3z, ..., (n-1)z\}$ is **optimum** (Suehiro, 1988)

Further Investigation

- Observe that
 - ① Both FQ and FZ sequences are perfect
 - ② All its constant multiples form an optimum family
 - ③ They have the same parameters: p-ary, period p^2

FQ Sequence
$$(p = 5)$$

	Г0	0	3	1	ן1	
	0	4	0	4	2	
q =	0	3	2	2	3	
	0	2	4	0	4	
	L0	0 4 3 2 1	1	3	0]	

q = (0,0,3,1,1,0,4,0,4,2,0,3,2,2,3,0,2,4,0,4,0,1,1,3,0) 2q = (0,0,1,2,2,0,3,0,3,4,0,1,4,4,1,0,4,3,0,3,0,2,2,1,0) 3q = (0,0,4,3,3,0,2,0,2,1,0,4,1,1,4,0,1,2,0,2,0,3,3,4,0)4q = (0,0,2,4,4,0,1,0,1,3,0,2,3,3,2,0,3,1,0,1,0,4,4,2,0) FZ Sequence (p = 5)

	۲ 1	2	3	4	ך0
z =	2	4	1	3	0
	3	1	4	2	0
	4	3	2	1	0
	0	2 4 1 3 0	0	0	0]

qz = (1,2,3,4,0,2,4,1,3,0,3,1,4,2,0,4,3,2,1,0,0,0,0,0,0) 2z = (2,4,1,3,0,4,3,2,1,0,1,2,3,4,0,3,1,4,2,0,0,0,0,0,0) 3z = (3,1,4,2,0,1,2,3,4,0,4,3,2,1,0,2,4,1,3,0,0,0,0,0,0)4z = (4,3,2,1,0,3,1,4,2,0,2,4,1,3,0,1,2,3,4,0,0,0,0,0,0)

Further Investigation

- Q1 How are they related?
- Q2 In what sense, can they be called "equivalent" with each other?
- Q3 Does there any other p-ary perfect sequences of period p^2 with all of whose constant multiples form an optimum family?

→ All solved and submitted to IT transaction

Differential Sequence and Perfectness

• Define $d_{s,\tau}$ as:

$$d_{\boldsymbol{s},\tau}(t) \triangleq \boldsymbol{s}(t+\tau) - \boldsymbol{s}(t)$$

• $p \times p$ array form of $d_{s,\tau}$

$$\boldsymbol{d}_{\boldsymbol{s},\tau} = \begin{bmatrix} d_{\boldsymbol{s},\tau}(0) & d_{\boldsymbol{s},\tau}(1) & d_{\boldsymbol{s},\tau}(2) & \cdots & d_{\boldsymbol{s},\tau}(p-1) \\ d_{\boldsymbol{s},\tau}(p) & d_{\boldsymbol{s},\tau}(p+1) & d_{\boldsymbol{s},\tau}(p+2) & \cdots & d_{\boldsymbol{s},\tau}(2p-1) \\ d_{\boldsymbol{s},\tau}(2p) & d_{\boldsymbol{s},\tau}(2p+1) & d_{\boldsymbol{s},\tau}(2p+2) & \cdots & d_{\boldsymbol{s},\tau}(3p-1) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ d_{\boldsymbol{s},\tau}((p-1)p) & d_{\boldsymbol{s},\tau}((p-1)p+1) & d_{\boldsymbol{s},\tau}((p-1)p+2) & \cdots & d_{\boldsymbol{s},\tau}(p^2-1) \end{bmatrix} (\text{mod } n)$$

- Theorem 2: The Fermat-Quotient sequence has d_{q,τ} with
 (1) each <u>column</u> of d_{q,τ} is balanced at τ ≠ 0 mod p and
 (2) each <u>row</u> of d_{q,τ} is balanced at τ ≡ 0 mod p ≠ 0
 - We call this as RC-balanced
 - Hence, perfect
 - This proves Theorem 1-1

Transformations Preserving RC-Balancedness

- Theorem 3: If s has RC-balanced differential sequences, then
 - (1) Constant-Multiple: s' = ms(2) Constant-Column-Addition: $s' = A_i(s)$ (3) Column-Permutation: $s' = P_{\sigma}(s)$

are also have RC-balanced differential sequences. Thus, perfect.

Can we make optimum pairs using each transforms?
(1) makes optimum pairs. Can (2) or (3) give also?

Constant-Column-Addition

Let
$$s' = \mathcal{A}_i(s)$$
. Then
 $s'(t) = \begin{cases} s(t) + 1 \mod p & \text{If } t \equiv i \mod p \\ s(t) & \text{otherwise} \end{cases}$

• $p \times p$ array form:

$$\mathcal{A}_{i}(\boldsymbol{s}) = \begin{bmatrix} s(0) & \cdots & s(i) + 1 & \cdots & s(p-1) \\ s(p) & \cdots & s(p+i) + 1 & \cdots & s(2p-1) \\ s(2p) & \cdots & s(2p+i) + 1 & \cdots & s(3p-1) \\ \vdots & \cdots & \vdots & \ddots & \vdots \\ s((p-1)p) & \cdots & s((p-1)p+i) + 1 & \cdots & s(p^{2}-1) \end{bmatrix} (\text{mod } p)$$

$$\mathcal{A}_{i}^{j}(\boldsymbol{s}) = \begin{bmatrix} s(0) & \cdots & s(i) + j & \cdots & s(p^{2}-1) \\ s(p) & \cdots & s(p+i) + j & \cdots & s(2p-1) \\ s(2p) & \cdots & s(2p+i) + j & \cdots & s(3p-1) \\ \vdots & \cdots & \vdots & \ddots & \vdots \\ s((p-1)p) & \cdots & s((p-1)p+i) + j & \cdots & s(p^{2}-1) \end{bmatrix} (\text{mod } p)$$

Combinations of Constant-Column-Addition

For some integer sequence $\mathbf{a} = (a(0), a(1), ..., a(p-1))$,

$$\mathcal{A}^{\boldsymbol{a}}(\boldsymbol{s}) \triangleq \left(\prod_{i=0}^{p-1} \mathcal{A}_i^{\boldsymbol{a}(i)}\right)(\boldsymbol{s})$$

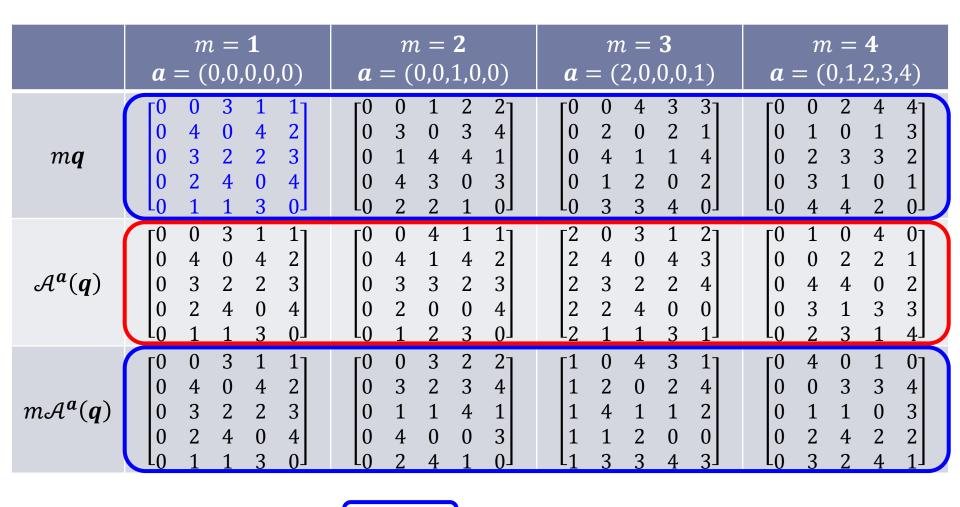
$$= \begin{bmatrix} s(0) + a(0) & s(1) + a(1) & \cdots & s(p-1) + a(p-1) \\ s(p) + a(0) & s(p+1) + a(1) & \cdots & s(2p-1) + a(p-1) \\ s(2p) + a(0) & s(2p+1) + a(1) & \cdots & s(3p-1) + a(p-1) \\ \vdots & \vdots & \ddots & \vdots \\ s((p-1)p) + a(0) & s((p-1)p+1) + a(1) & \cdots & s(p^2-1) + a(p-1) \end{bmatrix}$$

Optimum Families

<u>Theorem 4</u> :

q is FQ and $a_1, a_2, a_3, ..., a_{p-1}$ are some integer sequences. Then $\mathcal{F}_A(q) = \{\mathcal{A}^{a_1}(q), 2\mathcal{A}^{a_2}(q), 3\mathcal{A}^{a_3}(q), ..., (p-1)\mathcal{A}^{a_{p-1}}(q)\}$ is optimum

• Theorem 1-2 is a corollary since it is a special case with $a_i = (0,0,...,0)$ for all i



: Optimum Family

: Not Optimum

Conclusion

We proposed <u>new optimum families</u> of perfect sequences using the <u>Fermat-Quotient sequence</u>

▶ *p*-ary sequences, period p^2 , family size p-1

We showed that Theorem 1~4 work also for the <u>Frank-Zadoff sequences</u>

Some Extra Comments

- Q1 How are they related?
- Q2 In what sense, can they be called "equivalent" with each other?
- Q3 Does there any other p-ary perfect sequences of period p^2 with all of whose constant multiples form an optimum family?
- We distinguished the <u>relation between Fermat-Quotient and</u> <u>Frank-Zadoff sequence</u>
- We argued the equivalence condition to preserve optimality, and showed that FQ and FZ are not equivalent
- ▶ We found construction of <u>general optimal families</u> of *p*-ary sequences, period *p*², family size *p* − 1 including families <u>not</u> equivalent with both FQ and FZ