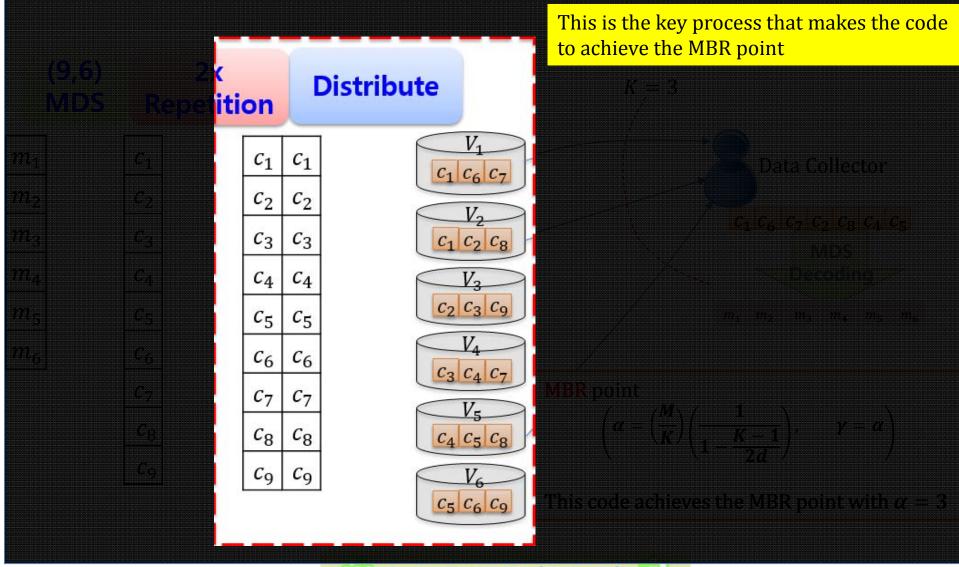
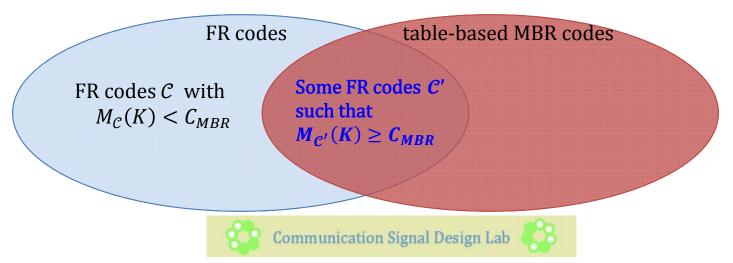

Locally Repairable Fractional Repetition Codes

Mi-Young Nam, Jung-Hyun Kim, and Hong-Yeop Song my.nam, jh.kim06, hysong@yonsei.ac.kr


2015 International Workshop on Signal Design and Its Applications (IWSDA 2015)

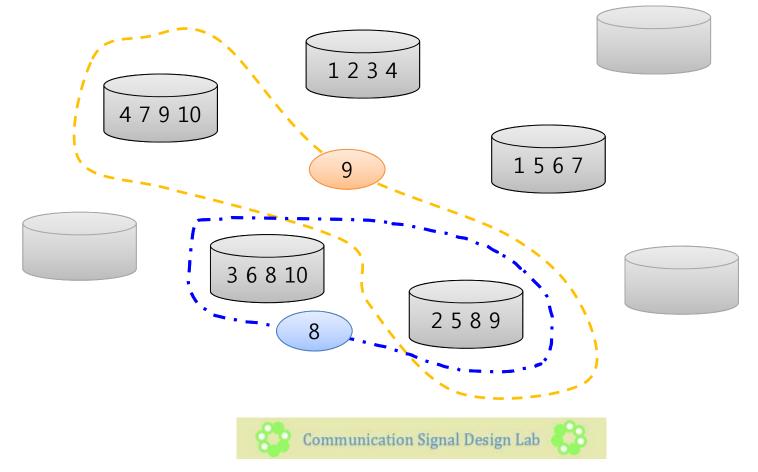
Fractional Repetition Codes


[S. E. Rouayheb-2010]

The maximum file size of FR Codes

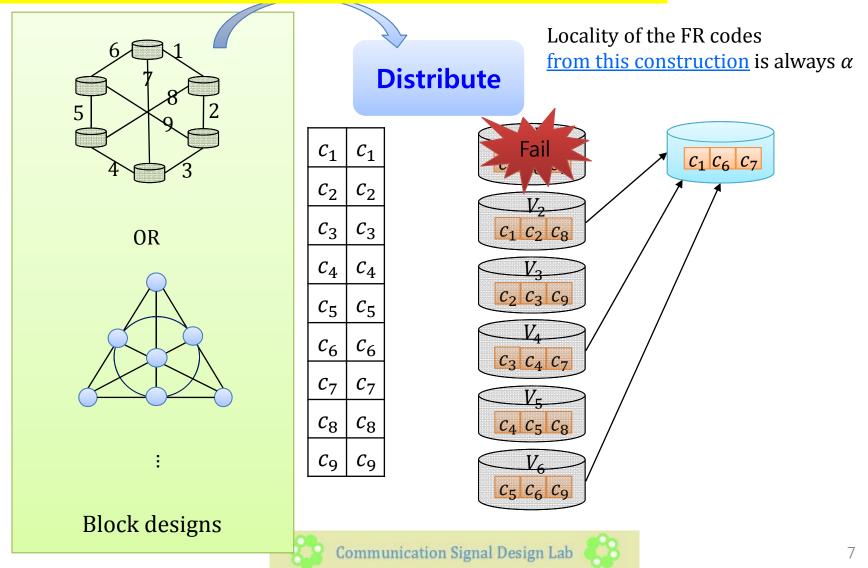
- $M_{\mathcal{C}}(K)$ of FR codes \mathcal{C}
 - > The maximum file size that can be stored by the FR code given *K*
 - For FR codes, this is the same as the maximum number of distinct symbols (or packets) that can be obtained by contacting any *K* nodes
- A Fractional Repetition Code whose maximum file size achieves the MBR capacity can be regarded as an MBR code
 - ▶ $M_{\mathcal{C}'}(K) \ge C_{MBR}$ for some FR codes \mathcal{C}'
 - $M_{\mathcal{C}'}(K) > C_{MBR}$ is possible due to the <u>table-based repair</u>
 - Strictly, FR codes are not the same as the MBR codes (random repair)

FR Codes and MBR Codes



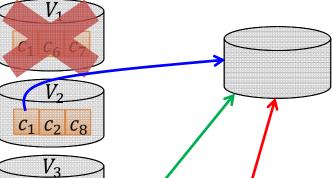
- There are many explicit constructions for FR codes C' with the maximum file size that satisfies the following: $M_{C'}(K) \ge C_{MBR}$
 - [S. E. Rouayheb-2010]: Graphs, Steiner systems
 - [J. C. Koo-2011]: Finite geometries, Bipartite cage graphs
 - [S. Pawar-2013]: Balls-in-bins for Randomized construction
 - [0. Olmez-2013] : Resolvable Designs, Mutually Orthogonal Latin Squares
 - [Z. Bing-2014]: Group Divisible Designs

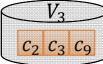
Constraints for achieving MBR capacit

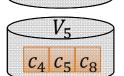

- Traditional FR Codes
 - > Every pair of nodes can store at most 1 symbol in common.
 - ➢ From this construction, the FR code can achieve the MBR capacity.
 - > This is an explicit construction for MBR codes

Locality of FR Codes

This construction guarantees that the resulting code to be an MBR code

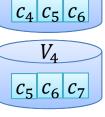



Locality of FR Codes


Original FR Codes

Proposed Locally Repairable FR Codes

The same amount of data should be communicated to repair the failed node for both cases.

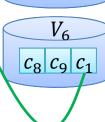


 V_6

 $C_5 C_6 C_9$

 $C_3 C_4 C_7$

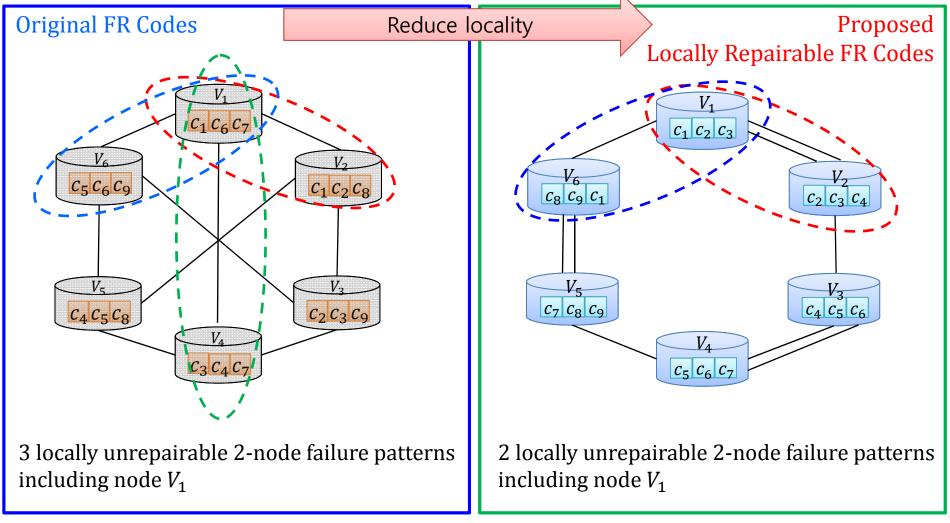
Then, what is the benefit to decrease the number of nodes contacted for the repair?




 V_2

 $C_2 C_3 C_4$

 V_3



Multi-Node Failure

• Locally unrepairable 2-node failure patterns

Locally Repairable FR Codes

• Definition 1. [S. E. Rouayheb-2010]

A *Fractional Repetition (FR) code* C with repetition degree ρ , for an (n, K, d) DSS, is a collection C of n subsets V_0, \dots, V_{n-1} of a set $\Omega = \{0, \dots, \theta - 1\}$ and of cardinality d each, satisfying the condition that each element of Ω belongs to exactly ρ sets in the collection. Note that $d = \alpha$ in this case

• **Definition 2.** An (n, K, d, α) *locally repairable FR code* is the (n, K, d, α) FR code with the repair degree dwhich is smaller than the storage size α .

Locally Repairable FR Codes

• **Theorem 1.** The maximum file size $M_{LFR}(K)$ of an $(n, K, d = 2, \alpha > 2)$ Locally repairable FR code satisfies: This is the maximum number of

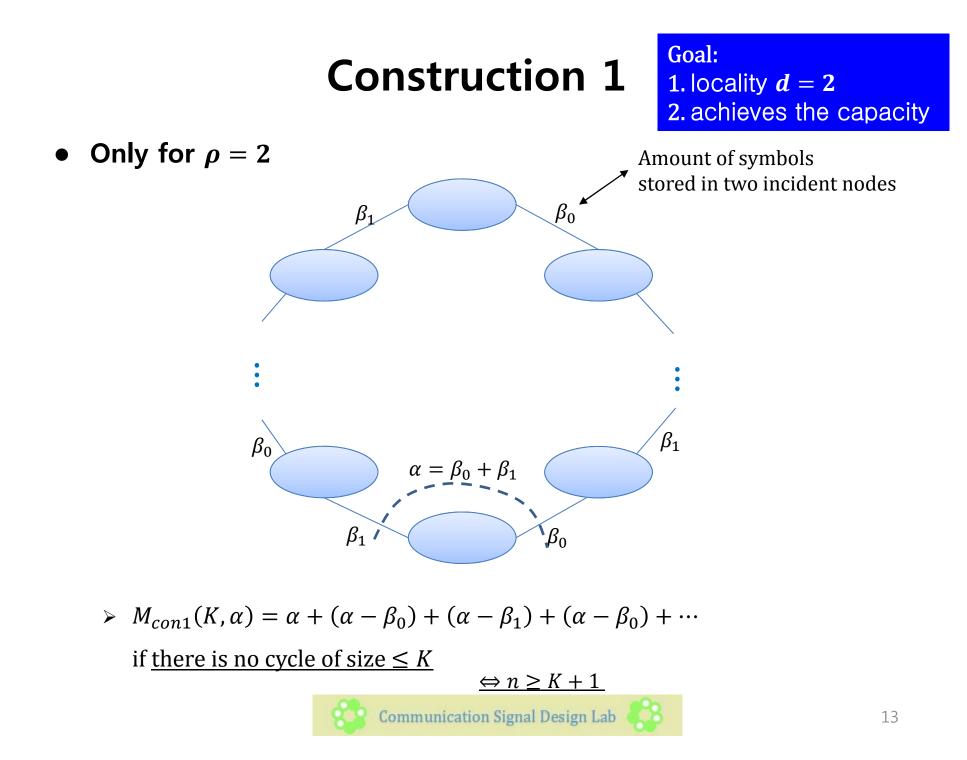
This is the maximum number of distinct symbols that can be obtained by contacting any *K* nodes

$$M_{LFR}(K) \le \alpha + \underbrace{\{(\alpha - \beta_0) + (\alpha - \beta_1) + (\alpha - \beta_0) + \cdots\}}_{(K-1) - \text{terms}}$$

where $\alpha = \beta_0 + \beta_1$ and $\beta_0 \ge \beta_1$.

proof		K	M(K)
$\beta_0 \beta_1$		1	3
V ₀ Locality 2		2	3 + 1
		3	3 + 1 + 2
V ₁ V ₂	V ₃	4	3 + 1 + 2 + 1
		5	3 + 1 + 2 + 1 + 2

Proposed Constructions



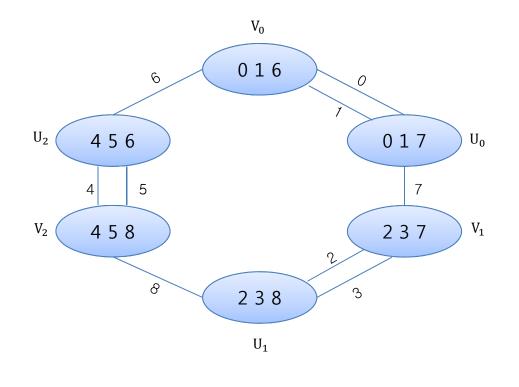
- **Construction 1** (attains the bound of Theorem 1)
 - > Repetition degree $\rho = 2$
- **Construction 2** (attains the bound of Theorem 1)
 - > Repetition degree $\rho = 3$
 - Large number of storage nodes are required

• Construction 3

- > Repetition degree $\rho = 3$
- Reduces the number of storage nodes
- But does not attain the capacity bound

Some Possible Parameters for Construction 1

ho heta	$\rho\theta = n\alpha$: Condition for all FR codes					
20	Only $\rho = 2$ is possible for construction 1 $2\theta = n\alpha \leftarrow 0$ for each $\alpha = 3,4,5,$ Varying n, θ for fixed α					
α	θ	$n=rac{2 heta}{lpha}$	$K \leq n-1$	$M(K) = \alpha + \underbrace{\{\beta_1 + \beta_0 + \beta_1 + \cdots + \beta_{(K-1)-times}\}}_{(K-1)-times}$	$ \underbrace{\begin{array}{c} \cdot \\ \cdot \end{array}}_{\substack{ \cdot \\ }} & \begin{array}{c} MDS \ code \\ parameter \\ & (\theta, M(K)) \end{array} $	
3	3	$\frac{2\theta}{3} = 2$	1	3	(3,3)	
			1	3	(6,3)	
3	6	4	2	3 + 1	(6,4)	
			3	3 + 1 + 2	(6,6)	
[- ·			1	3	(9,3)	
ļ			2	3 + 1	(9,4)	
3	9	6	3	3 + 1 + 2	(9,6)	
			4	3 + 1 + 2 + 1	(9,7)	
			5	3 + 1 + 2 + 1 + 2	(9,9)	
3	12	8	: 💝	Communication Signal Design Lab	: 14	

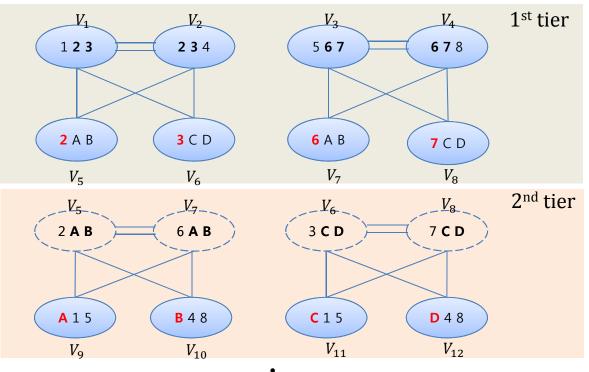

Some Possible Parameters for Construction 1

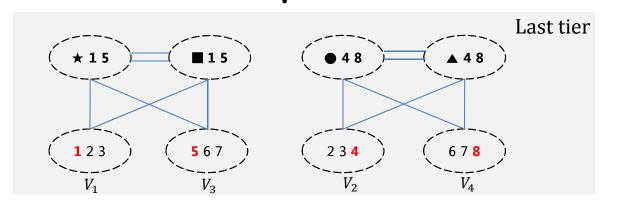
 $\rho\theta = n\alpha$ -Only $\rho = 2$ is possible for construction 1 Varying α $2\theta = n\alpha <$ MDS code $n=\frac{2\theta}{\alpha}$ $K \leq n-1 \quad M(K) = \alpha + \underbrace{\{\beta_1 + \beta_0 + \beta_1 + \cdots\}}_{(K-1)-times}$ parameter θ α $(\boldsymbol{\theta}, \boldsymbol{M}(\boldsymbol{K}))$ 1 (12, 4) 4 2 4 + 2(12, 6) $\frac{2\theta}{4} = 6$ 3 12 (12, 8)4 4 + 2 + 24 + 2 + 2 + 2(12, 10)4 5 (12, 12)4 + 2 + 2 + 2 + 25 (15, 5)1 2 7 (15,7) $\frac{2\theta}{5} = 6$ 15 5 3 (15, 10)10 12 (15, 12)4 5 15 (15, 15):

Goal:
1. locality d = 2
2. achieves the capacity

Example:
$$\alpha = 3, \theta = 9, n = 6$$

 $M_{con1}(K) = 3 + (1 + 2 + 1 + \cdots)$ K-1 terms here only for the value of $K = 1, 2, ..., 5 < n$

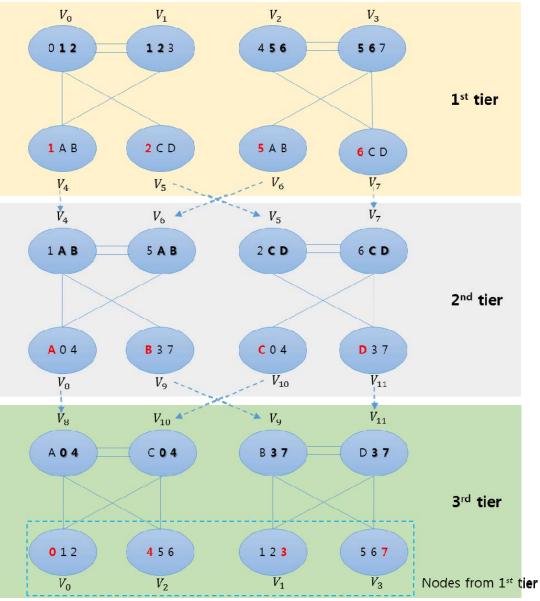




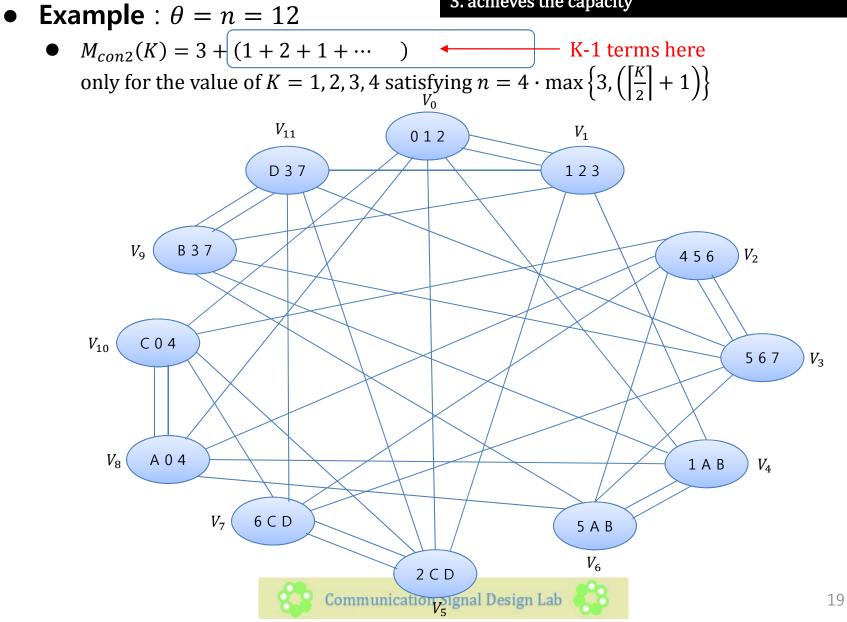
• Only for $\rho = 3$ and $\alpha = 3$

Goal: 1. locality d = 2 for single failure 2. local repair for double-failure

3. achieves the capacity


17

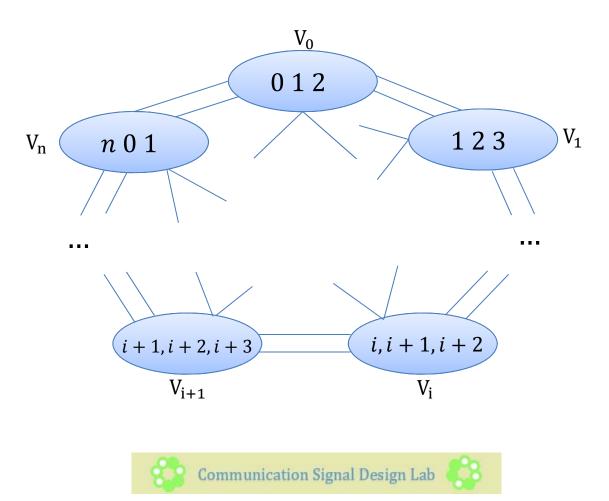
- Construction for $K \le 4$
- If $K \ge 5$, then the code of the figure cannot achieve the capacity $M_{LFR}(K)$ of Theorem 1
- To achieve the capacity $M_{LFR}(K)$, the number of tiers l should satisfy that


 $l = \max\left\{3, \left(\left\lceil\frac{K}{2}\right\rceil + 1\right)\right\}$

• Then the number of nodes n = 4l

Goal: 1. locality d = 2 for single failure 2. local repair for double-failure 3. achieves the capacity

Goal: 1. locality d = 2 for single failure 2. local repair for double-failure 3. achieves the capacity



Some Possible Parameters for Construction 2

ρθ	$\rho\theta = n\alpha$: Condition for all FR codes				
Only $\rho = 3$ and $\alpha = 3$ is possible for construction 2 $3\theta = 3n \leftarrow 0$ Varyi					
α	θ	$m{n}=m{ heta}$ multiple of 4	K	$M(K) = \alpha + \underbrace{\{\beta_1 + \beta_0 + \beta_1 + \cdots\}}_{(K-1)-times}$	MDS code parameter $(\theta, M(K))$
			1	3	(12,3)
3	10	10	2	3 + 1	(12, 4)
	3 12 12	3	3 + 1 + 2	(12,6)	
Í		4	3 + 1 + 2 + 1	(12,7)	
			1	3	(16,3)
			2	3 + 1	(16, 4)
3	16	16	3	3 + 1 + 2	(16,6)
3	$\begin{vmatrix} 3 \\ 16 \end{vmatrix}$ 16	4	3 + 1 + 2 + 1	(16,7)	
			5	3 + 1 + 2 + 1 + 2	(16,9)
			6	3 + 1 + 2 + 1 + 2 + 1	(16, 10)
:	:	:	: 💝	Communication Signal Design Lab	: 20

- Only for $\rho = 3$ and $\alpha = 3$
 - > allows smaller number of nodes than construction 2.
 - > This cannot achieve the capacity of Theorem 1.

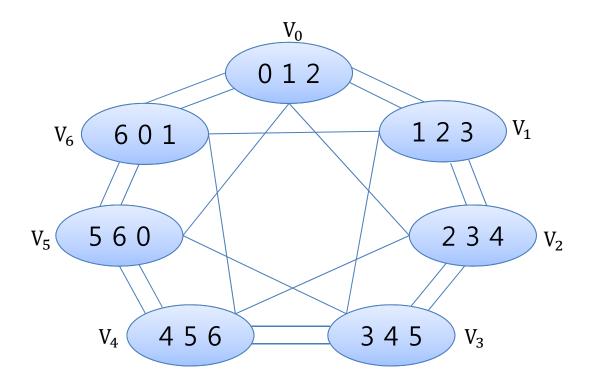
Goal:

3. reduce *n*

1. locality d = 2 for single failure

2. local repair for double-failure

Some Possible Parameters for Construction 3



ρθ	$\rho\theta = n\alpha$: Condition for all FR codes					
3 <i>0</i>	Only $\rho = 3$ and $\alpha = 3$ is possible for construction 3 $3\theta = 3n \leftarrow 0$ Varying n, θ for fixed α					
α	θ	$5 \le n = heta$	$K \leq n-2$	$M(K) = \alpha + (K-1)$	$ \begin{array}{c} MDS \ code \\ parameter \\ (\theta, M(K)) \end{array} $	
			1	3	(5,3)	
3	5	5	2	3 + 1	(5,4)	
			3	3 + 1 + 1	(5,5)	
			1	3	(6,3)	
2		6	2	3 + 1	(6,4)	
3	6	6	3	3 + 1 + 1	(6,5)	
			4	3 + 1 + 1 + 1	(6,6)	
3	7	7	1 : 5	$3 + (\underbrace{1+1+\cdots}_{(K-1)-times})$	(7, M(K))	
:	•	•	Com	nunication Signal Design Lab 👫	: 22	

- **Example**: $\theta = 7, n = 7$
 - > $M_{con3}(K) = 3 + 1 + 1 + 1 + \cdots$ = 3 + (K - 1) < $M_{LFR}(K)$

Goal:

1. locality d = 2 for single failure 2. local repair for double-failure 3. reduce n

Comparison with (other) FR codes

• $\alpha = 3$

$\rho = 2$			FR codes [2010] from regular graph		Construction 1		
	max. file size <i>M(K</i>)		$K\alpha - \binom{K}{2}$		$K\alpha - (K-1) - \left[\frac{K-1}{2}\right]$		
	# nodes (n)		n		$n = \max\{K + 1, 4\},\$ n is even		
	Locality (1-failure))	3			2	
	Locality (2-failure))	MDS de	ec.	MD:	S dec.	
$\rho = 3$			R codes [2010] rom Steiner system	Constr	uction 2	Constructior	n 3
	max. file size $M(K)$		$K\alpha - \binom{K}{2}$	$K\alpha - (K - $	$1) - \left[\frac{K-1}{2}\right]$	$\alpha + (K-1)$)
	# node (n)		n	$n = 4 \cdot \max$	$\left\{3, \left[\frac{K}{2}\right] + 1\right\}$	n = K + 2	
	Locality (1-failure)		3		2	2	
	Locality (2-failure)		3		3	2	
					-		

Comparison ($\alpha = 3$ **) with other LRC**

	2x Repetition Code	Construction 1	Simple LRC [Papailiopoulos 2014]
Locality (1-failure)	1	2	2
Repair bandwidth	3	3	6
Unrecoverability	3.33×10^{-4}	5.94×10^{-8}	1.47×10^{-7}
Minimum distance	2	4	4
MTTDL Mean Time To Data Loss	66.25 days	32.69 years	7.17 years
# Computations per single repair	NONE	NONE	3 adds/node
Storage overhead	1 ×	2 ×	2 ×

For the MTTDL calculation, we used a standard Markov model.

Simple LRC [D. S. Papailiopoulos-2014]

- Simple but more reliable than the repetition •
- Some additions are required for node repair

Comparison Summary

• New LRCs are proposed based on Fractional Repetition codes

Compared to the original FR Codes	Better locality
	 Less capacity Restricted α

Compared to the other LRCs	 Computations are NOT required for a node repair Minimum repair bandwidth Larger MTTDL can be achieved (More reliable)
	• Not <i>d_{min}</i> -optimal

26

 Construction 1 gives a code that attains the bound of Theorem 1

- > for $\rho = 2$ only, but with $\alpha = 3,4,5,...$
- Construction 2 gives a code that attains the bound of Theorem 1
 - > for $\rho = 3$ and $\alpha = 3$ only

Selected Open Problems

What happens if we allow $\rho \geq 3$ and/or $\alpha > 3$?

- Is there any construction that attains the bound of Theorem 1?
- > We do not have any known constructions in this case.
- > If one can prove that none exists, then it implies
 - the bound of Theorem 1 is not tight, and
 - A new bound should be derived

