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 Distributed Storage System (DSS)

Locality :
The number of 
nodes accessed to 
repair a single node 
failure
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Busy
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Busy

Frequent node failure

node repair

Node 
failure :
A disk fault or 
a node in use

 Locally repairable code (LRC)
▫ Codes with good (small) locality

Locality (Generalized definition)

• 𝓵-locality (𝑟ℓ) : locality for ℓ symbols repair

* 1-locality (r1)  is the same with “locality” in the previous 
definition

Codeword :

Symbol set
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 Complete Graph (CG) codes
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Generator matrix of 𝟐𝟏, 𝟔, 𝟔 𝟐 code
𝑲𝟔 complete graph

(𝒌 = 𝟔)

Theorem: It has 𝑑𝑚𝑖𝑛 = 𝑘 and

1)  𝒓𝟏 = 𝟐 for 𝑘 = 𝑑𝑚𝑖𝑛 ≥ 2.

2)  𝒓𝟐 = 𝟑 for 𝑘 = 𝑑𝑚𝑖𝑛 ≥ 3.

3)  𝑟ℓ ≤ min 2ℓ, 𝑘 for 𝑑𝑚𝑖𝑛≥ 2 and ℓ = 1, 2, 3, …

Note that 𝑝 can be any (positive) divisor of 𝑘.

 𝑝 = 𝑘 (CG codes) ↔ lowest code rate

 𝑝 is the smallest non-trivial prime factor of 𝑘. (CMG codes)

↔ highest code rate

 𝑝 = 1 ↔ G = 𝐼 and 𝑑𝑚𝑖𝑛 = 1 (trivial)

 Complete Multipartite Graph (CMG) codes
(𝑝-partite)



Communication Signal Design Lab

 Joint locality
▫ A set of numbers of symbols for repairing various 

erasure patterns of symbols

Q1. Can we design a Binary LRC with
joint locality (𝟐, 𝟑) or (𝟐, 𝟒)?

One choice would be binary simplex codes with the 
parameter 𝑛 = 2𝑘 − 1, 𝑘, 𝑑𝑆 = 2𝑘−1
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for 𝑘 = 4 𝑟ℓ ≤ ℓ +1  (Rawat-14)

• It has (𝒓𝟏, 𝒓𝟐) = (𝟐, 𝟑). – proof is straightforward

 Simplex codes

▫ Code rate : 𝑅𝑆 =
𝑘

2𝑘−1
(VERY LOW)

Q2. Can we improve the rate 
maintaining joint locality (𝟐, 𝟑) or (𝟐, 𝟒)?
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for 𝑘 = 4

• This code STILL has 𝒓𝟏, 𝒓𝟐 = 𝟐, 𝟑 .
• How to describe the code ? 
 Its generator matrix has all the columns of weight 1 

and weight 2 ONLY.
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Generator matrix of 𝟏𝟓, 𝟔, 𝟒 𝟐 codeComplete 2-partite graph

(𝒑 = 𝟐,  𝒌 = 𝟔)

• Code rate : 𝑹 =
𝟐

𝒌−
𝒌

𝒑
+𝟐

≥ 𝑹𝑺 =
𝒌

𝟐𝒌−𝟏

• Minimum distance : 𝑑 = 𝑘 −
𝑘

𝑝
+ 1 ≤ 𝑑𝑆 = 2𝑘−1

Theorem: It has 𝑑𝑚𝑖𝑛 = 𝑘 −
𝑘

𝑝
+ 1 and

1) 𝒓𝟏 = 𝟐 for 𝑑𝑚𝑖𝑛 ≥ 2.

2) 𝒓𝟐 =  
𝟑, for 𝑝 = 𝑘 and 𝑑𝑚𝑖𝑛 ≥ 3,
𝟒, for 𝑝 < 𝑘 and 𝑑𝑚𝑖𝑛 ≥ 3.

3)  𝑟ℓ ≤ min 2ℓ, 𝑘 for 𝑑𝑚𝑖𝑛≥ 2 and ℓ = 1, 2, 3, …

 Concluding Remarks

▫ The rate of CG/CMG codes gives a global lower 

bound. How good is it?

▫ LRC construction not based on simple graph

▫ Binary LRC with joint locality (𝑟1, 𝑟2, 𝒓𝟑, 𝒓𝟒)

▫ Non-binary LRC construction with the same 𝐺 for 

either CG or CMG code


