

Binary Locally Repairable Codes from Complete Multipartite Graphs

Jung-Hyun Kim, Mi-Young Nam, and Hong-Yeop Song

International Conference on ICT Convergence Oct. 28-30, 2015, Jeju, Korea

Distributed Storage System (DSS)

P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, "On the locality of codeword symbols," IEEE Trans. Inform. Theory, vol. 58, no. 11, pp. 6925-6934, Nov. 2012.

Locally repairable code (LRC)

- Codes with good (small) locality
- Locality (Generalized definition)
 ℓ-locality (r_ℓ) : locality for ℓ symbols repair

 \ast 1-locality (r_1) is the same with "locality" in the previous definition

A. S. Rawat, A. Mazumdar, and S. Vishwanath, "Cooperative local repair in distributed storage," arXiv Preprint arXiv:1409.3900, 2014.

Complete Graph (CG) codes

 K_6 complete graph (k = 6)

Generator matrix of $[\mathbf{21},\mathbf{6},\mathbf{6}]_2$ code

Theorem: It has $d_{min} = k$ and 1) $r_1 = 2$ for $k = d_{min} \ge 2$. 2) $r_2 = 3$ for $k = d_{min} \ge 3$. 3) $r_{\ell} \le \min(2\ell, k)$ for $d_{min} \ge 2$ and $\ell = 1, 2, 3, ...$

Complete Multipartite Graph (CMG) codes (*p*-partite)

Note that p can be any (positive) divisor of k.

- p = k (CG codes) \leftrightarrow lowest code rate
- *p* is the smallest non-trivial prime factor of *k*. (CMG codes)
 ↔ highest code rate
- $p = 1 \leftrightarrow G = I$ and $d_{min} = 1$ (trivial)

- Joint locality
 - A set of numbers of symbols for repairing various erasure patterns of symbols

Q1. Can we design a Binary LRC with joint locality (2, 3) or (2, 4)?

One choice would be binary simplex codes with the parameter $n = 2^k - 1$, k, $d_s = 2^{k-1}$

- $G_{S4} = \begin{pmatrix} 1000 & 111000 & 1110 & 1\\ 0100 & 100110 & 1101 & 1\\ 0010 & 010101 & 1011 & 1\\ 0001 & 001011 & 0111 & 1 \end{pmatrix} \text{for } k = 4 \qquad r_{\ell} \le \ell + 1 \text{ (Rawat-14)}$
- It has $(r_1, r_2) = (2, 3)$. proof is straightforward
- Simplex codes
 - Code rate : $R_S = \frac{k}{2^k 1}$ (VERY LOW)

Q2. Can we improve the rate maintaining joint locality (2, 3) or (2, 4)?

- This code STILL has $(r_1, r_2) = (2, 3)$.
- How to describe the code ?
- ✓ Its generator matrix has all the columns of weight 1 and weight 2 ONLY.

 $\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ \end{pmatrix}$

Complete 2-partite graph (p = 2, k = 6)

Generator matrix of $[15, 6, 4]_2$ code

- Code rate : $R = \frac{2}{k \frac{k}{n} + 2} \ge R_S = \frac{k}{2^{k} 1}$
- Minimum distance : $d = k \frac{k}{p} + 1 \le d_S = 2^{k-1}$

Theorem: It has $d_{min} = k - \frac{k}{p} + 1$ and 1) $\mathbf{r_1} = \mathbf{2}$ for $d_{min} \ge 2$. 2) $\mathbf{r_2} = \begin{cases} \mathbf{3}, & \text{for } p = k \text{ and } d_{min} \ge 3, \\ \mathbf{4}, & \text{for } p < k \text{ and } d_{min} \ge 3. \end{cases}$ 3) $r_{\ell} \le \min(2\ell, k)$ for $d_{min} \ge 2$ and $\ell = 1, 2, 3, ...$

Concluding Remarks

- The rate of CG/CMG codes gives a global lower bound. How good is it?
- LRC construction **not based on** simple graph
- Binary LRC with joint locality (r_1, r_2, r_3, r_4)
- Non-binary LRC construction with the same G for either CG or CMG code

