Correlation properties of sequences from the 2-D array structure of Sidelnikov sequences of different lengths and their union

Min Kyu Song and **Hong-Yeop Song Yonsei University**

Dae San Kim Sogang University Jang Yong Lee Agency for Defense Development

ISIT 2016, July 10-15

Correlation among sequences

Let $\{a(t)\}_{t=0}^{L-1}$ and $\{b(t)\}_{t=0}^{L-1}$ be two *M*-ary sequences of period *L*. A complex (periodic) correlation between $\{a(t)\}$ and $\{b(t)\}$ is defined by

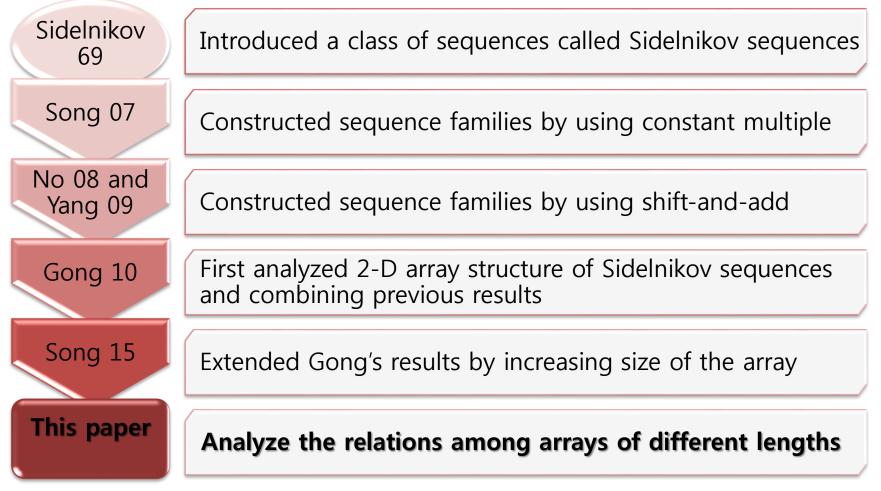
$$C_{a,b}(\tau) = \sum_{t=0}^{L-1} \omega_M^{a(t)-b(t+\tau)}.$$

For a set of sequences (or a sequence family) Ω , we denote the maximum magnitude of all the non-trivial complex correlations of any two pair of sequences in Ω as $C_{max}(\Omega)$.

Notations

- p : a prime
- $q = p^r$: a prime power with a positive integer r
- $GF(q^d)$: the finite field with q^d elements
- α : a primitive elements over $GF(q^d)$
- $\beta = \alpha^{\frac{q^d-1}{q-1}}$: the primitive element over GF(q)
- M: a divisor of q-1 with $M \ge 2$
- d : a positive integer with $2 \le d < \frac{1}{2}(\sqrt{q} \frac{2}{\sqrt{q}} + 1)$
- $p_l(x)$: the minimal polynomial of $-\alpha^{-l}$ over GF(q)
- ω_M : a complex primitive *M*-th root of unity
- ψ : a multiplicative character of GF(q) of order M defined by $\psi(x) = \omega_{M}^{\log_{\beta}(x)}.$

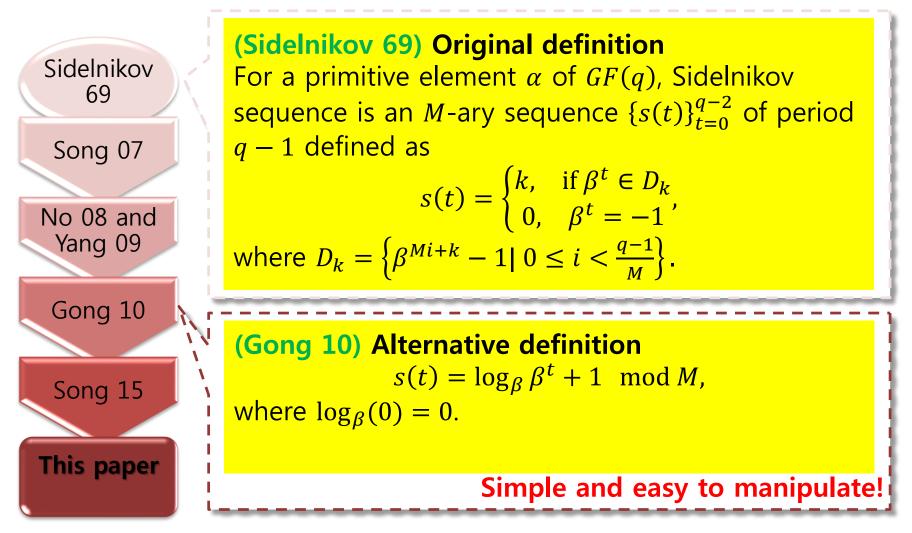
For simplicity, we keep $\psi(0) = 1$.



Enlarging family **size** with **small correlation** magnitude

Hong-Yeop Song

Sidelnikov sequences



Sidelnikov

69

Song 07

No 08 and

Yang 09

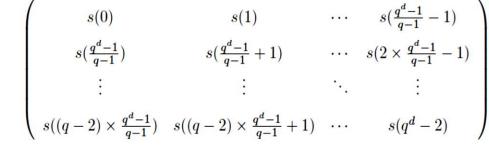
Gong 10

Song 15

This paper

Array structure of Sidelnikov sequences

For an *M*-ary Sidelnikov sequence s(t) of period $q^d - 1$, make an array as



and choose some columns to construct a set of *M*-ary sequences of period q - 1.

(Song 15) Column sequence representation For a primitive element α of $GF(q^d)$ and the primitive element $\beta = \alpha^{\frac{q^d-1}{q-1}}$ of GF(q), the *l*-th column can be represented as $v_l(t) = \log_\beta N_1^d (\alpha^l \beta^t + 1) \mod M$, where N_1^d is the norm function from $GF(q^d)$ to GF(q).

How to choose columns?

use cyclotomic cosets to choose columns

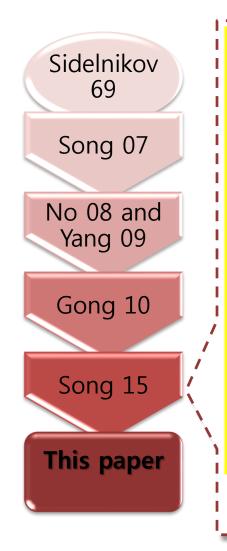
(Song 15) Column selection

Define two different cyclotomic cosets as 1) A *q*-cyclotomic coset $C_l(d)$ containing $l \mod q^d - 1$: $C_l(d) = \{l, lq, ..., lq^{d_l-1} \pmod{q^d - 1}\}.$

2) A *q*-cyclotomic coset $\tilde{C}_l(d)$ containing $l \mod \frac{q^d - 1}{q - 1}$: $\tilde{C}_l(d) = \left\{ l, lq, \dots, lq^{m_l - 1} \left(\mod \frac{q^d - 1}{q - 1} \right) \right\}.$

- Choose the smallest representative l of each and every $\tilde{C}_l(d)$ except for 0 such that $m_l = d_l$.
- Denote by $\Lambda'(d)$ the set of such representatives.

Sequence family construction



CSDL

(Song 15)
1) For any l ∈ Λ'(d) N₁^d(α^lβ^t + 1) = β^lp_l(x) where p_l(x) is a minimal polynomial of degree d which has -α^{-l} as a root. Thus, all the roots are distinct.
2) Let Σ'(d) be a set of column sequences:

 $\Sigma'(d) = \{ cv_l(t) \mid l \in \Lambda'(d), 1 \le c < M \}.$

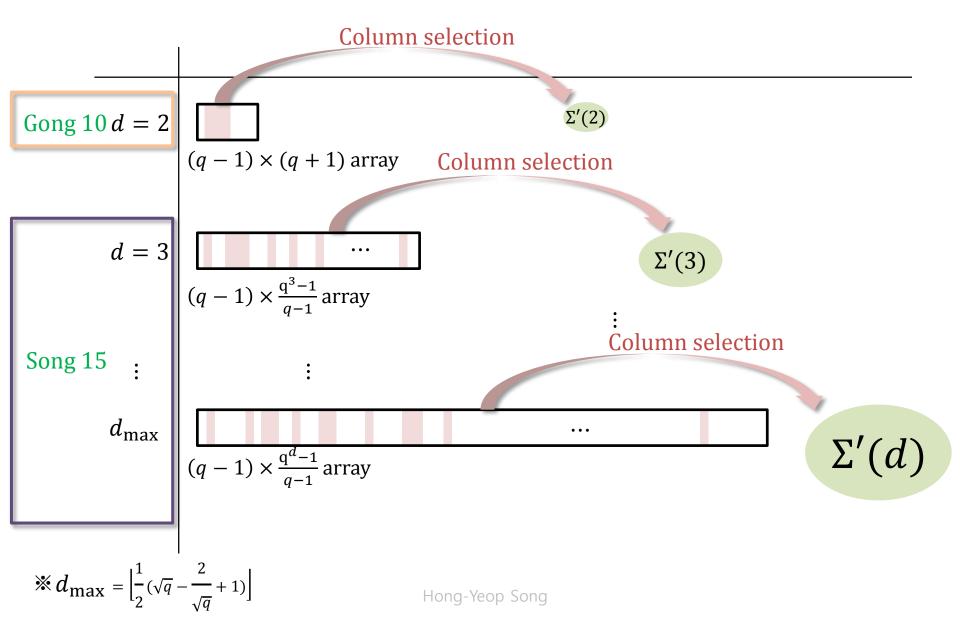
Then,

- $C_{\max}(\Sigma'(d)) \le (2d-1)\sqrt{q}+1.$
- The size of $|\Sigma'(d)| \sim \frac{(M-1)q^{d-1}}{d}$ as $q \to \infty$.

The upper-bound is obtained by using Weil bound.

Sequence Family construction

CSDL



Weil Bound

Let $f_1(x), ..., f_k(x)$ be k distinct monic irreducible polynomials over GF(q) with positive degrees $m_1, ..., m_k$, respectively.

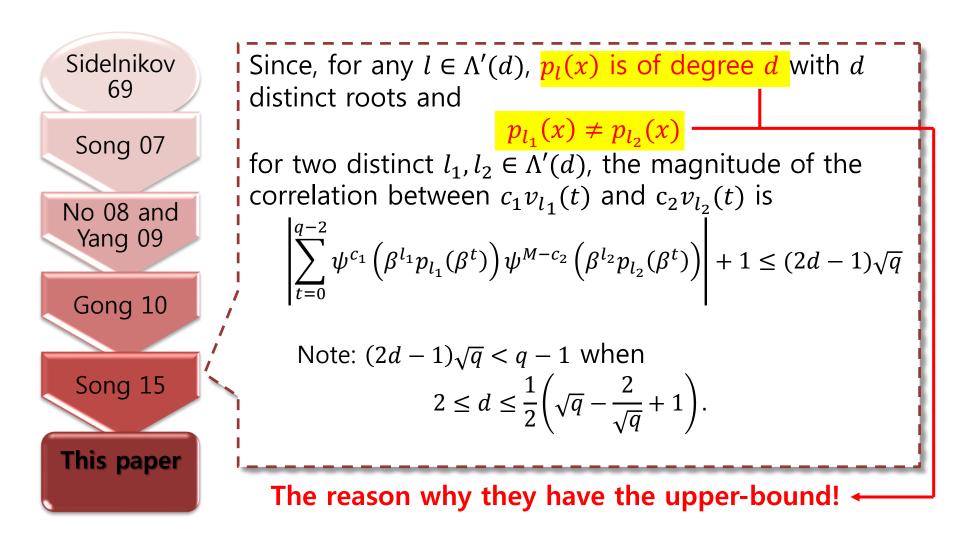
Let ψ_1, \dots, ψ_k be non-trivial multiplicative characters of GF(q) with $\psi_i(0) = 1$ for $i = 1, \dots, k$.

Then, if the product character $\prod_{i=1}^{k} \psi_i(f_i(x))$ is non-trivial for some $x \in GF(q)$, then

$$\left|\sum_{x\in GF(q)}\psi_1(a_1f_1(x))\cdots\psi_k(a_kf_k(x))\right| \leq \left(\sum_{i=1}^l d_i - 1\right)\sqrt{q}$$

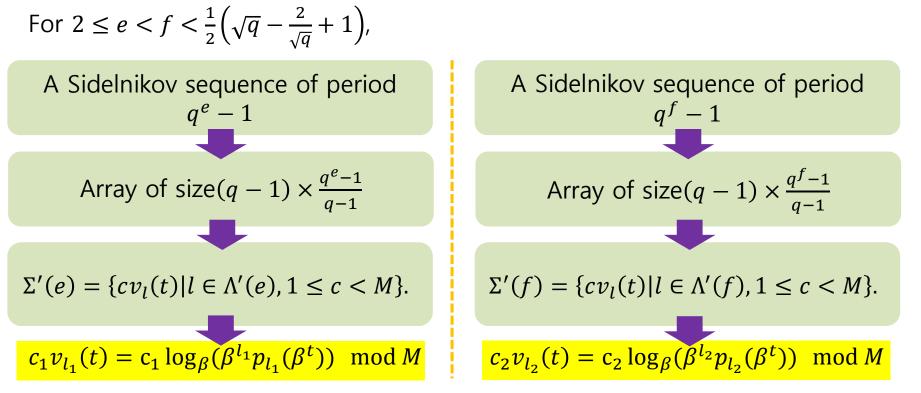
for any $a_i \in GF(q) \setminus \{0\}, i = 1, ..., k$.

Brief proof of the bound



Key observation

CSDL



(1) $p_{l_1}(\beta^t)$ and $p_{l_2}(\beta^t)$ are of degree *e* and *d* and have all distinct roots. (2) They are distinct polynomials since they are minimal and of different degree. (3) But, β s in two representations may denote different primitive elements over GF(q). \rightarrow If we make them same, we can obtain upper bound of the magnitude of their cross-correlation by applying Weil bound in the same way of Song's result.

Key observation (2)

Theorem. (relation of sequences from arrays of different size) Let *e* and *f* be two integers with $2 \le e < f < \frac{1}{2} \left(\sqrt{q} - \frac{2}{\sqrt{q}} + 1 \right)$. If we construct $\Sigma'(e)$ and $\Sigma'(f)$ by choosing primitive elements properly, then any two sequences $a(t) \in \Sigma'(e)$ and $b(t) \in \Sigma'(f)$ are cyclically inequivalent regardless of their column indices. Furthermore, $C_{\max} \left(\Sigma'(e) \cup \Sigma'(f) \right) \le (e + f - 1)\sqrt{q} + 1.$

How to choose: Consider $GF(q^h)$ where h = lcm(e, f). Let α be a primitive element of $GF(q^h)$. Then, $\alpha_e = \alpha^{(q^h-1)/(q^e-1)}$, $\alpha_f = \alpha^{(q^h-1)/(q^f-1)}$,

CSDL

are two primitive elements over $GF(q^e)$ and $GF(q^f)$, respectively. Obviously,

$$\beta = \alpha_e^{(q^e - 1)/(q - 1)} = \alpha_f^{(q^f - 1)/(q - 1)}.$$

So, we can easily obtain above theorem by applying Weil bound.

Union of sequence families from arrays of different size

Definition. (Extended sequence families)

Two *M*-ary sequence families of period q - 1.

1)
$$\Sigma'^{U}(d) = \bigcup_{e=2}^{d} \Sigma'(e)$$
. 2) $\Sigma'^{D}(d) = \bigcup_{\substack{e \mid d \\ e \neq 1}} \Sigma'(e)$.

Computation over $GF(q^h)$

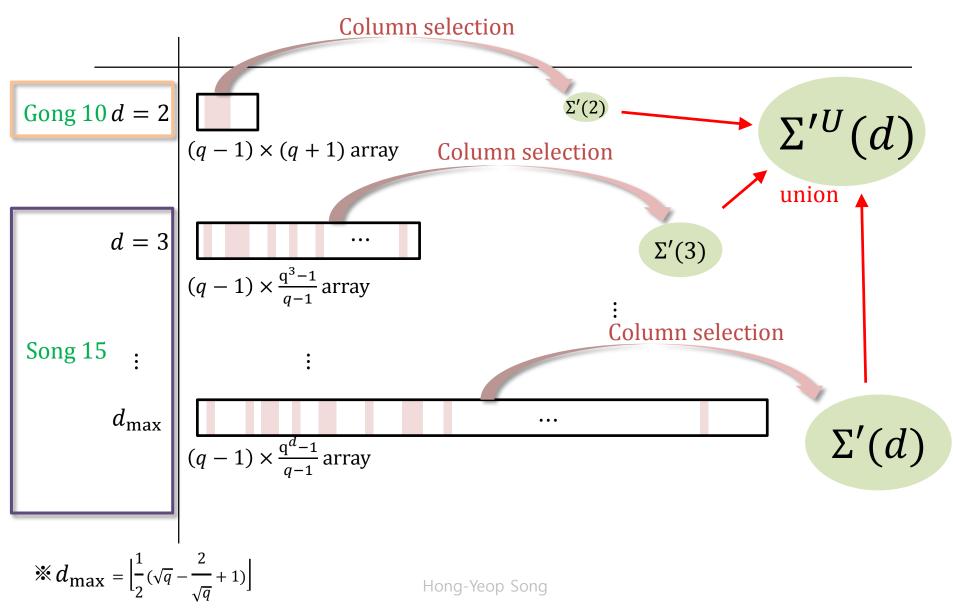
where h = lcm(2,3,...,d) where h = d **Corollary. (Upper bound of maximum non-trivial correlation)** 1) The Non-trivial complex correlation of $\Sigma'^{U}(d)$ is bounded by $C_{\max}(\Sigma'^{U}(d)) \leq (2d-1)\sqrt{q}+1$,

and

$$C_{\max}(\Sigma'^{D}(d)) \leq (2d-1)\sqrt{q}+1.$$

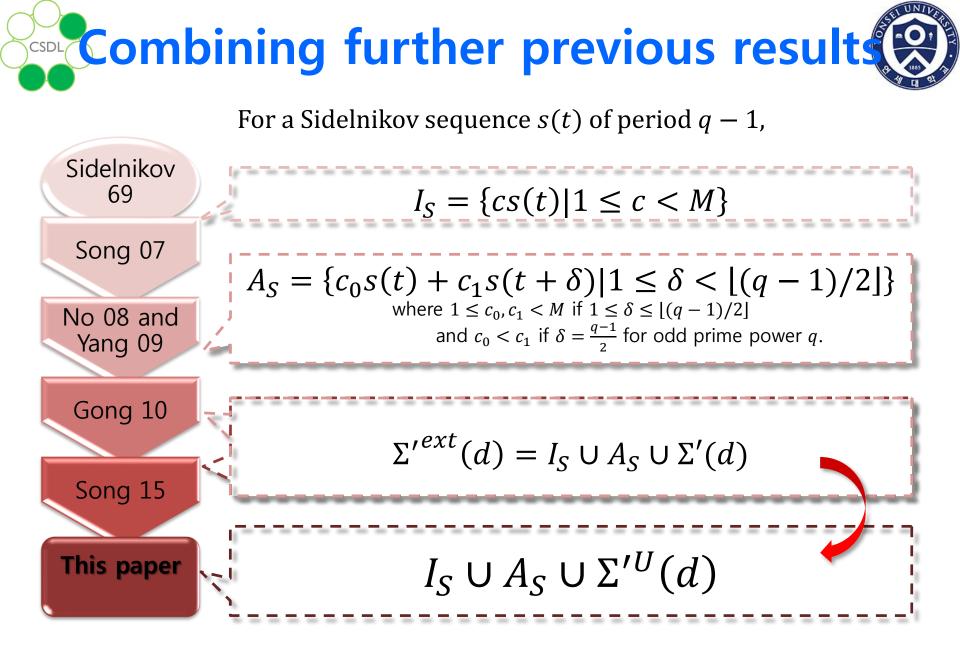
2) The sizes $|\Sigma'^{U}(d)|$ and $|\Sigma'^{D}(d)|$ are asymptotic to, as $q \to \infty$, $(M-1)\frac{q^{d-1}}{d}$.

$\Sigma'^{U}(d)$ construction



Comparison

q		64					
М		7			63		
	d	2	3	4	2	3	4
$ \Lambda' $		32	1386	66560	32	1386	66560
	$(M-1)q^{(d-1)}/d$	192	8192	393216	1984	84651	4063232
	$ \Sigma'(d) $ (Song 15)	192	8316	399360	1984	85932	4126720
	$ \Sigma'^U(d) $	192	8508	407868	1984	87916	4214636
$C_{\max}(\Sigma'(d)) = C_{\max}(\Sigma'^U(d))$		25	41	57	25	41	57



Question?

Hong-Yeop Song